Move our way

MICRO-EPSILON

iICONNECT

Graphic development system
for the object-oriented design
of data processing-algorithms

Contents

Introduction ... ———— 5
Licence Agreementccoommmmmmmmmmmnnnninsnnnneennnnnnes 6
1. Installation ... 10
2. Editor Functionscccommmmmmeeeniiiinnnnnnnnnees 12
2.1 Drawing Signal Graphsccccocceeeeiiiiiienniee e, 14
2.1.1 The Signal Graph, the ICONNECT Program 14
2.1.2 Selecting Modulescccueieiiiiiiiiiieee e 16
2.1.3 Defining Module Parameters...........cccccoeiiiiiienennnen. 16
2.1.4 Selecting Parameter Sources in ICONNECT 17
2.1.5 Connecting Module POrtsccccceiiiiiiiiiiiiee e, 18
2.1.6 Saving and Loading Signal Graphs............ccccceeen...e. 18
2.2 0NliNE Help ...oeeviiiiieeeee e 19
2.3 Editing the Modules in the Signal Graph 19
2.4 Editing a Module Group in the Signal Graph 20
25 EXAMPIE oo 20
2.6 SUMMACY oot 24
3. The ICONNECT Module Library.................. 26
3.1 Arithmetic Modules ..., 27
3.1.1 The VecOpVec Modulecccceeiiiiiieiiiiiiii e 27
3.1.2 The VecOpScal Module...........cccoooueieeiniiiiiieiieeeeeee 33
3.1.3 The Formula Modulecccoeiiiiiiiiiieee 37
3.2 Modules of the Display Groupcccceevrvieeeeiiineeeenne 43
3.2.1 The AnalogDisp Module..........ccccceiiiiiiiiiieeeeeee 43
3.2.2 ThePlotModule..........oooiiiiiiiiiiiee e 46
3.2.3 The InputManager and DisplayManager Modules 51
3.3 Modules of the LOGQiC Groupcceeveeriieeeeiiiieeeeenne 55
3.3.1 The CountModuleoccuiiiiiiiiiiiieee e 55
3.3.2 The UniGate Module............ccccoiiiiiiiiiiiieieeeeee 58
3.3.3 The FlipFlop, Mono-Flop, and T-FlipFlop Modules 60
3.4 Saving and Loading Dataccccceeeiiiiiiiiiiiieneeee 62
3.5 Modules of the Signal Processing Group................... 66

3.6

3.6.1
3.6.2
3.6.3
3.7

3.7.1
3.7.2

6.1

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9

7.1
7.2

9.1
9.2
9.3

Modules of the Statistics Groupccccceveveeeeiiineenn. 70

The DStatistics Modulecoooiiiiiiiiiieieeeee, 70
The Hist Modulec.oooviiiii e 71
The Sort Module ... 72
Modules of the FlowControl Groupccccceeeeiieennn. 73
The ForNext Module ... 73
The DEMUX ModUIEoooiiiiiiiiieieee e 74
Communication and Type Information 77
User Administrationccccmmmmmmeeeennnnnnnnn. 81
TIPS & THCKS oeeeeeiiiiirreeciir e 85
SChEAUIET ..o 85
Interpret Programming ... 88
Input/Output Declarationccccoeeeiiiiieieniiieeeeee 88
Declarating Variablesccccooiiiieiiiiiiiieee 89
Calling up Predefined Functions............ccccceeeiieeen. 89
Program Sections ..o 90
Read/Write Operations on Streams............ccccvvvveennn. 91
The Type-Info Structure ..., 92
Interpret as a Data Sourceccocceeeeiiiiieeiiiiieeeene 93
g [e o L] TP PPPPPTPPPPPRPPPPP 94
EXaMPIES ... 95
Debugger......cccccoiimmmmmniiiininnnenenn s 100
Breakpoint ... 100
Watch WINAOWcoiiiiiiiiiiec e 101
AppPendiX.....ccommeeiiirirnnn i —————- 103
Data Types in ICONNECTcccceiiiiiieiiieee e 103

Modules in Connection with External Data Sources. 104
Error Messages.........coovveiiiiiiiiiiiee e 105

Windows, Windows NT are trademarks of the Microsoft Corporation.

MICRO-EPSILON MESSTECHNIK
GmbH & Co.KG

Department Software
Kénigbacher Str. 15

94496 Ortenburg

Tel. +49/8542/168-0

Fax +49/8542/168-90
e-mail: info@micro-epsilon.de
http://www.micro-epsilon.com

Introduction, Licence Agreement, Installation Kap. 1

Introduction

ICONNECT is a development and runtime system for signal processing tasks
in the automation, measuring, and testing technology, and for process
monitoring and process control. In a graphic environment the user can
generate a signal graph that describes the data flow of a complex
sequence. In alibrary ICONNECT provides algorithms (modules) that you
“connect” on the screen using the mouse.

This tutorial has been written in order to enable the developer to design
applications himself. The individual contents are explained with the help of
examples that are all stored on the CD. The CD also contains an overview of
the modules used in examples demo_01 to demo_47

(path: \manual\pdfienglish\verzeichnis.pdf). The chapter following this
introduction describes the definition of an application consisting of a signal
graph without a user interface of its own. It also discusses the functions of
the editor and demonstrates how individual applications can be
documented in a comfortable way.

The graphical user interface allows to use the application without having
detailed knowledge of the signal graph. You are able to integrate your own
algorithm modules (see module programming manual) as DLLs with suitable
interface in the development environment.

ICONNECT is a constantly growing software packet that is an ideal tool
especially development of systems.

The online-help offers additional information about inputs/outputs, function,
parameters etc. of the individual modules.

We wish you every success with your first steps!

Your MICRO-EPSILON team

X9751025-C010080MSC

m Kap. 1 Introduction, Licence Agreement, Installation

Licence Agreement

Your right to use ICONNECT is subject to the terms in this licence
agreement. Please read this carefully. If you do not agree to these terms,
return the data medium package and all other items complete and unused
to your authorized ICONNECT dealer for a full refund.

Warning!

It is illegal to make copies of ICONNECT without the prior consent of
MICRO-EPSILON. Making copies will render you liable to pay damages and
is an offence under §§106ff of the copyright law.

Warning!

Possession or use for commercial purposes of any program, device or other
means intended to facilitate removal or circumvention of the hardware lock
or node indentification number with which this copy of ICONNECT is
supplied is a violaton of law.

1.LICENCE
MICRO-EPSILON grants you a non-transferable licence for using this copy
of ICONNECT and the accompanying documentation on equipment
owned by you or under your control according the terms below:

X9751025-C010080MSC

Introduction, Licence Agreement, Installation Kap. 1

A. SINGLE-USER INSTALLATION
If you have acquired a licence for an ICONNECT single-user version,
your copy may be used only as a single-user installation subject to
the following conditions:

You may not allow this copy of ICONNECT to be used by more than one
person or on more than one stand-alone computer or workstation at any
time.

B. ADDITIONAL RIGHTS AND OBLIGATIONS
You may make copies of the original data media as archival copies to
be used solely for backup. You may not copy ICONNECT or
accompanying documentation except as permitted by this agreement.
Any other copies of the whole or any part of ICONNECT are unlawful.
You may not modify, translate or adapt ICONNECT or accompanying
documentation, nor arrange or create derivative works based on
ICONNECT for any purpose. The transfer of the right granted to use
this product to a third person is permissible, but only if (a) all the data
media together with the accompanying material are sold to the third
person, (b) you do not keep any copies of ICONNECT (including
copies on the hard disk), and (c) the third person explicitly undertakes
to observe all the conditions of this licence. Your right to use this
product becomes void with such a transfer.

The following applies to customers who are resellers:

Ultimate customers may only be granted a right to use this product, if
they undertake to observe the regulations contained in this licence
agreement.

It is not allowed to remove notes, labels, or trademarks of MICRO-
EPSILON from your copy of ICONNECT or from the accompanying
material.

The ICONNECT program may not be reconstructed, decompiled, or
disassembled. If your copy of the ICONNECT program is equipped
with a copy protection facility (hardware lock, dongle), this copy may
only be used with this facility or with a replacement facility supplied by
MICRO-EPSILON or by an authorized ICONNECT dealer. It is not
allowed to remove or avoid the copy protection facility.

X9751025-C010080MSC

m Kap. 1 Introduction, Licence Agreement, Installation

2. OWNERSHIP

MICRO-EPSILON remains the holder of copyrights and other protective
rights in ICONNECT and the accompanying material, also if copies have
been made thereof with the consent of MICRO-EPSILON. The software and
the documentation contain business secrets of MICRO-EPSILON and/or their
licenser; they are copyrighted. The customer will observe this, and will
especially not delete copyright notes and/or serialisation numbers.

The customer will not make the software and the documentation available to
third persons who are not resellers or ultimate customers, without the written
consent of MICRO-EPSILON.

3. UNAUTHORISED COPYING

If you copy the ICONNECT program or the accompanying documentation
without permission, or if you violate any other regulations of this licence
agreement, your right to use the product will be terminated immediately. In
this case MICRO-EPSILON reserves all rights.

4. WARRANTY

MICRO-EPSILON warrants that ICONNECT will perform substantially as
described in the ICONNECT Reference Manual and the data media on which
ICONNECT is furnished will be free from defects. Excluding any
other liability MICRO-EPSILON or the authorised ICONNECT dealer are
prepared - according to our choice - within a period of six months starting
from the moment the program package is delivered, to either (a) establish
proper usability of the program with suitable effort and within an adequate
time, (b) to replace your copy of ICONNECT by functionally equivalent
programs, or (c) to pay back the purchase price against return of the
product, which means that the licence will expire.

There is no further warranty. Especially there is no warranty that
ICONNECT will satisfy your special requirements. You are solely responsible
for the selection, installation, and for the use of the program, as well as for
the results intended to be achieved with the program. MICRO-EPSILON
neither guarantees uninterrupted or error-free operation of the program, nor
its suitability for a certain purpose.

X9751025-C010080MSC

Introduction, Licence Agreement, Installation Kap. 1 m

5. LIMITATION OF LIABILITY

If there should be stringent regulations demanding a liability on MICRO-
EPSILON’s side, such liability will be limited to culpably caused and
predictable damage and to an amount only as high as the sales price. Any
liability for lost profit, occurred losses, indirect damage, and consequential
damage is excluded. Liability for loss of data is also excluded. The user
acknowledges that this distribution of the risk is adequate in view of the
amount of the licence fee. These limitations of liability do not apply to
assured properties and to damage that is due to intent or gross negligence
of MICRO-EPSILON, or which result from the violation of such contractual
obligations that are of basic importance for the establishment of the
purpose of the contract.

6. GENERAL REMARKS

This agreement is not governed by the standard U.N. Convention on
Contracts for the International Sale of Goods, but only by the law of the
Federal Republic of Germany. Any disputes that might arise from this
licence agreement will be subject to German jurisdiction. The place of
jurisdiction will be Passau. This licence will expire without further notice or
action from MICRO-EPSILON, if bankruptcy or insolvency proceedings are
instituted against you, or if your company is dissolved. This agreement
reflects all the possible arrangements with MICRO-EPSILON and replaces
any other declarations of intention and advertising messages referring to the
ICONNECT product and to the accompanying material. There have not been
any oral collateral agreements. The contractual regulations will remain
effective in their remaining parts, even if individual regulations should be
ineffective. Ineffective regulations are considered to be replaced by such
regulations that come as close as possible to the desired economic success
in alegally permissible way. ,,MICRO-EPSILON* and ,ICONNECT" are
registered trademarks of MICRO-EPSILON MESSTECHNIK GmbH & Co. KG.

X9751025-C010080MSC

Kap. 1 Introduction, Licence Agreement, Installation

1. Installation

Please read the licence agreement carefully before starting the
installation!

The full version of ICONNECT is installed as follows:
1. Plug the supplied dongle into the parallel port LPT1 of your computer.

2. Insert the CD into your computer’s CD-ROM.

ABOUT ICONNECT
INTRODUCTION

APPLICATION

APPLICATION OPTODAT 2000

S5TART
INSTALLATION

ABOUT US

Pic. 1.1: Start screen

Select Installation from the main menu (see pic. 1.1) and then
ICONNECT Complete Install.

3. Follow the on-screen instructions and select the ICONNECT
installation directory.

4. After installation licensing must be done. Insert the licence disk into
your floppy disk drive and press the Start button.

X9751025-C010080MSC

Introduction, Licence Agreement, Installation Kap. 1

The demo version of ICONNECT is installed as follows:
1. Insert the CD into your computer’s CD-ROM drive. Select Installation
from the main menu (see pic. 1.1) and then ICONNECT Complete
Install.

2. Follow the on-screen instructions and select the ICONNECT installation
directory.

3. The demo version of ICONNECT needs no licensing. Press the Cancel
button to close the licensing dialog.

X9751025-C010080MSC

Kap. 2 Editor Functions

2. Editor Functions

When ICONNECT is started the log-in dialog is shown. Repeat the user
name (default value) for the password and confirm with the OK button. If you
use the demo version, please click on the OK button without entering a
password. Arrange the icon bars (see pic. 2.1a) with pressed left mouse
button similar to pic. 2.1b.

DSEK| R (8 QA _ 8wy

Pic. 2.1a: Dragging the tool bar

—— System Tool bar

Menu bar Module window
ICONMECT - TCGraph2 - nicht lizenzierte Demo-¥ersion
File Edt Module Maco Meazurement Extra Yiew Window 7
yOEEH f 228 e _ e Bl hma | 7
E# TCGraph2 M=l E Modules M= =
4|/ |= ‘2 c:Programms\i \Modul
[:I Datald
[:I Data Source
-] Diisplay

[:I Flow Cantrol
[:I Hardware 10
[:I Image Proceszing
[:I Logic

E-C7 Math

[:I I atri

-] ME Systems
[:I Scale

[:I Signal Proceszing
[:I Statistics
[:I Timing
[:I User Input

Work area

Pic. 2.1b: ICONNECT development environment

X9751025-C010080MSC

Editor Functions Kap. 2

The menu bar allows you to access editor functions, control functions for
the signal graphs, and user administration functions (see chapter 5).

The system tool bar provides access to the mostimportant ICONNECT
functions by clicking on tool buttons.

The module window allows the selection of modules.
The work area is where the signal graph is constructed with modules.
The example shown in pic. 2.2 should demonstrate the capabilities of the

development environment.

Please note:
ﬂ In the following chapters left-click means pressing the left mouse button
@ once, right-click pressing the right mouse button once. Double-click-left
means clicking the left mouse button twice. Double-click-right is similar.

X9751025-C010080MSC

Kap. 2 Editor Functions

2.1 Drawing Signal Graphs

Applications are generated by drawing signal graphs. This chapter
demonstrates the fundamentals for this process. The parameterisation of a
function generator and the presentation of its output signal on a display will
be used as an example.

2.1.1 The Signal Graph, the ICONNECT Program

Pic. 2.2 shows ICONNECT with open windows on the screen. The window
named demo_01 - Active signal graph!!! shows an example of a signal
graph. The individual modules perform different tasks, such as for example I/
O operations, logic and arithmetic functions, and visualisation of processed
measurement data. All the modules have their inputs on the left side and
their outputs on the right side. By means of these module ports the data are
supplied to the parameterised algorithm and are output after processing.
The window named AnalogChart1 is the display window that belongs to the
module with the same name. This window displayes the scaled output of the
module SinGen1. The signal graph is controlled by means of the

*{ Start/ Stop

| 11| Pause

icons in the system tool bar or by using the menu. The corresponding items
in the Measurement menu are Start/Stop and Pause.

The function of a signal graph can be recognised from the block diagram. In
the signal graph of pic. 2.2 a sine-shaped signal is generated in the
SinGen1 (FuncGen) module. The Scale1 module scales this signal to a
range of -1 to 1 milliampere. ICONNECT carries information about the
characteristic properties of a signal in all the communication channels. This
information also contains the unit and the range of a signal. In every module
this information is passed through or modified. This guarantees that the
displays show the correct units (see chapter 4). In AnalogChart1 the
recorded data are, in accordance with the parameter settings, sent to the
display window, where they are displayed then.

The realisation of this example will be discussed below, with special
emphasis on the individual functions of the editor and the help system.

X9751025-C010080MSC

Editor Functions Kap. 2

ICOMMECT - nicht lizenzierte Demo-Yersion M= E3
File Edt Module Macro Measurement Exfra Wiew Window 7
DEHdH|E2R & A _ g ne
B demo_D1.tc2? - Active zig... =] ES

I IT
12 ——
Scaled AnalogCharti

Sinzen
4| I 3
i AnalogChart1 Hi=]

(& *le-003) zz.10.93 |

1.0 09:07:06

Sinus
0. 07
=1.0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.5 1 (3
|
Feady |Signal graph active ,E

Pic. 2.2: ICONNECT program

Please note:
@ All the examples discussed or presented in this tutorial are stored in the
directory c:\examples\demo, ¢ being the drive letter of your hard disk.

X9751025-C010080MSC

Kap. 2 Editor Functions
2.1.2 Selecting Modules

The following steps have to be performed in order to select the function
generator:

1. Left-click on menu item Module

2. Move the mouse pointer down to the User INPUT submenu, then right
to FuncGen and left-click again. The icon representing the algorithm
appears in the work area.

3. The icon can be moved across the work area with the mouse, and it
can be placed at the desired position with a left-click.

The two other modules Scale (Module > Scale) and AnalogChart
(Module > Display) are selected and placed in the same way.

2.1.3 Defining Module Parameters

In general a module has its module-specific dialog. There are two ways of
opening this dialog: Either with a double-click-left on the symbol of a
module icon, or with a right-click on the module icon, which will open a
pop-up menu where the item Properties must be selected with a left-click.

— Packet Paramater

Parameters: Murmber of 1 _:l
- v Generate Blacks: I
intern E

Block Size: 100 _:l

— Function Shape — Signalparameter

. r— Phasze Shift
' Sine Signal Mame;

ISinusSignaI o
€ Triangle I

Sample Rate [Hz]:

" Sawtaath 1a0 = ~ Mark to Space Ratia
Sl
Period Block [Hz]:
" Rectangle I‘IEHD s pel DC—[:]I _I\,
|
Cancel Help

Pic. 2.3: Dialog of the FuncGenmodule
X9751025-C010080MSC

Editor Functions Kap. 2

The FuncGen module generates signals like sine, rectangle, triangle, and
saw-tooth. See the online help for additional information.

The packet parameters Block Size and Number of Blocks characterise the
data flow between the modules. ICONNECT supports block-oriented
communication. Data belonging to a defined unit are gathered to form a
packet. A packet represents a number of data that belongs together
semantically, e.g. a picture, a measurement, or the data of a certain
workpiece. The packet is provided with information

(see Typelnfo chapter 4).

A packet comprises at least one data block, which in turn consists of at
least one data item (e.g. a measuring point). This two-step hierarchy of
packets and blocks makes sense, because it allows the calculation of
intermediate results in packets that are very large or are measured over a
long period of time. When a signal graph is developed it must be taken into
consideration that some modules only work in mode packet or block. The
Generate Packets checkbox can be used to determine whether a packet
with the corresponding number of blocks is generated as an output signal
or if this is not selected whether a continuously running packet i.e. a perma-
nent measurement is generated.

2.1.4 Selecting Parameter Sources in ICONNECT

Parameters can be generated in three different ways:

1. Parameters that are defined in the dialog are called internal parameters.
2. If database is selected as parameter source, the module port DB can be
used in the example with the function generator for reading in the frequency
and the sampling rate during the application runtime from a database.

3. With the EXT input any data from the signal graph can be used for the

corresponding parameters, if external is activated as parameter source
(see chapter 3.2.2).

Please note:
@ Chapter 4 contains more information about Block Size,
Number of Blocks and Packet.

X9751025-C010080MSC

Kap. 2 Editor Functions

2.1.5 Connecting Module Ports

If the mouse pointer touches a module port, the name of the input or output
will be displayed. A left-click on the module port generates the start of a
communication channel. A left-click on the port of the corresponding
second module completes the connection. A connection that has been
started by mistake can be removed again with a left-click in the work area.
ICONNECT will “tidy up” your work area (rearrange the module icons and
connect them with straight lines), if you select Right angled wiring in the
Edit menu.

2.1.6 Saving and Loading Signal Graphs

The WINDOWS file dialog is opened with a left-click on the File menu and
then by choosing Save as. The suffix .tc2 is automatically added to the file
name that is entered in the respective line. The file is then saved with a left-
click on the Save button.

S -1~

Speichern i I _ Y examples

exarnple o2

D ateinarne: Ie:-:ampleE Speichemn I
Dateityp: [ICONNECT Files [*tc2] =] abbrechen |

Pic. 2.4: Dialog of the Save as menu item

A signal graph can be loaded by choosing Open in the File menu, or by
selecting the folder icon. Type in the information and confirme. The actions
may also be performed with the keyboard-shortcuts that are mentioned in
the menus.

X9751025-C010080MSC

Editor Functions Kap. 2
2.2 Online Help

The online help is started by selecting the question mark in the menu bar
and then by selecting the sub-item Contents. Apart from the above-
mentioned possibility information about the modules can also be obtained
with a right-click on the module icon and then by selecting the help item.

2.3 Editing the Modules in the Signal Graph
Delete
Select the module to be deleted with a left-click, then press the del-key on
the keyboard. As an alternative an object can also be deleted with the menu
item Delete in the Edit menu.
Cut, Copy, Paste
Select the module and choose one of three methods known in Windows.
* Edit menu
* Pressing the buttons scissors, double document, and envelope
* Entering the corresponding keyboard-shortcuts that are listed in the
Edit menu (e.g. Strg X for cut)

Move a module

Select the module and move it with pressed left mouse button. The module
is positioned when the mouse button is released.

Q Please note:

A0 The module is referenced by its name and a modules instance (e.qg.
Scalet, pic. 2.2). In an ICONNECT session the module numbers are
incremented. It is therefore possible that there are differences between
the signal graphs shown in this tutorial and the graphs on your screen.

X9751025-C010080MSC

Kap. 2 Editor Functions
2.4 Editing a Module Group in the Signal Graph

The actions described in chapter 2.3. also apply to a group of modules.
Several modules can be selected by

* selecting the objects with left-click and pressed Shift key.

* drawing a selection frame. For this purpose keep the left mouse button
pressed down in the work area and use the mouse to draw a frame
across the modules.

In the Edit menu you may use the item Select All to select the complete
signal graph. The selection of a group can be undone with a left-click in the
work area.

2.5 Example

In this example you will create a random number generator. One value will
be generated every second, and it will be visualized in a digital display. The
completed signal graph is stored in the path \examples\demo\demo 02. We
recommend that you create the program yourself. For this purpose please
perform the following steps:

1. Select and place the Random module by using the menu Modules >
User INPUT > Random, or by using the respective icon from the
User INPUT tool bar. When an icon is selected with the mouse
pointer, its name is displayed in a tool-tip.

2. Double-click-left on the module icon to open the parameter dialog
(see pic. 2.5). Setting the parameters block size = 1, sampling rate =
1 Hz, and Gauss distribution, will generate a random number every
second. As already mentioned the packet parameter determines the
characterisation of the output data. In this example packets containing
one data block with one value each will be transmitted.

3. Select and place the DigitalDisp module (see chapter 2.1.2).

4. Connect the two ports (see chapter 2.1.5).

5. Activate the start symbol.

X9751025-C010080MSC

Editor Functions

|
Block Size: =] Samplerate Hz): |1
Mode: [Gauss 7] [V Packet
ultiplic:atar: |1— Offzet: IEI—

Cancel | Help |

Pic. 2.5: Dialog of the Random module

ICONMNECT - micht lizenzierte Demo-¥ersion M= E3

File Edt Module Macro Measurement Eatra Wiew Window 7

W S T - G R |

B demo_02_tc2. .. =] E3

rs |
Digital

Fa
"‘ o000
Dirg

Randomi1 Digitallisp1

< | v
i DigitalDiszp1 M=]
I1:

0.107089

Random

Feady Signal araph .

Pic. 2.6: Generation of a random number in ICONNECT

X9751025-C010080MSC

Kap. 2 Editor Functions

Then examine the possibilities of the digital display. For this purpose:

1. Open the parameter dialog of the DigitalDisp module with a double-
click-left on the module icon (see pic. 2.7), or with a right-click and
selecting the Properties... menu item.

A digital display can visualize up to eight signals in its window. The default
value is 1, which is not changed in this example. You can define a signal
name for each input. If you do not enter a name here, the display will show
the name of the signals Type-Info (see chapter 4). With the random number
generator this name is Random. If you do not want any text, please type in
a blank space in the signal name field.

DigitalDisp
— Pairts — Sighal name
oy [EEEES] o
Inputs: I'I _I; 12 I
— Properties for external display—— 12 I
Yfidth: |1EIEI 14 I
Font colar: [Ehomse. | I5: I
Background
calar: I:hg_lnse... IE: I
Border color: LT---l el I7: I
Fant size: Ismall ‘I I2: I

Pic. 2.7: Dialog of the DigitalDisp module

X9751025-C010080MSC

Editor Functions Kap. 2

2. Type in the signal name Signali at I1.

With the two buttons Font color: and Background color: you may set the
font colour and the background colour with the WINDOWS colour dialog.

3. Set the font size to Large.
You will notice that due to the large number of decimal digits the value to
be displayed does not completely fit into the window. Therefore modify the

number of decimal digits.

4. Right-click on the wire between the two modules. Select the
Properties item in the activated menu.

This action opens the properties dialog of the communication channel
(see pic. 2.8)

Tranzmizzion Properties

|dentifier: Il

Buffer size [byte]: |1 oao

Humber of digits

dizplayed after the IE

floating point:

Cancel | Help

Pic. 2.8: Properties of a communication channel

The buffer size determines the storage capacity of the communication
channel. The default value for this parameter is 1,000 byte. If more storage
capacity is required, the program reallocates the corresponding storage
space. In case of large volumes of data it is therefore possible that the first
pass of the signal graph takes a little longer, because it may be that the
storage capacity for the communication channels must first be adapted. The
accuracy of the communication channel, the default value of which is 6,
determines the number of decimal digits.

X9751025-C010080MSC

Kap. 2 Editor Functions

5. Reduce the line accuracy to 3 decimal digits and confirm your entry.
The changes will only become effective when the program is started.

Please note:
@ Inthe Extra > Standard Sefttings... menu you may set the line
@ accuracy as a global default for future communication channels.

2.6 Summary

In this first chapter you learned about the functions of the graph editor in
ICONNECT and about the fundamentals of generating simple signal graphs.
The chapter discussed details in some modules, and the Type-Info
contained in every data packet was mentioned, and the possibility of
parameterization communication channels.

In the next chapter the module library of ICONNECT will be explained in

several examples. The main emphasis will be placed on those modules that
are used most frequently.

X9751025-C010080MSC

Editor Functions

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
3. The ICONNECT Module Library

This chapter will extend your knowledge about signal graphs by introducing
new modules from the ICONNECT module library. You will

* learn about arithmetic modules and their properties with respect to
communication.

« discuss the modules of the User Input group, with the help you can
interact with your ICONNECT application.

* generate user interfaces with the DisplayManager and InputManager
modules

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.1 Arithmetic Modules

3.1.1 The VecOpVec Module

As an example you will add the signals of the modules FuncGen and
Random (see pic. 3.5). The following steps are necessary for this purpose:

1. Place the FuncGen module (Modules > DataSource), and make the
following entries in the dialog:
Sample rate: 512 Hz
Block size: 512 values
Periods per block: 2Hz

These settings will result in two periods per second with 256 values per
period.

2. Insert the Random module into the work area.
Parameters: Block size: 512values
Samplerate: 512Hz
Mode: Uniform
Packet output

Uniform will generate uniform distributed values in the range between
Oand 1.

Scale |

— Outpuk

Parameters: M 1

Diata bype: DOUBLE[] = kin: 1

i

[nput Urit:

ILETS 1000000 EaCtDrZ Wil

. - Signal
Mir: 1.000000 e

|
VI

Cancel

Pic. 3.1: Parameters of the Scale1 module

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

3. Select the Scale1 (Modules > Scale) module and assign the
parameters as shown in pic. 3.1.

For the outputs -10 is entered as a Min-value, and 10 as a Max-value. This
information determines the range of the signal. If Type-Info is selected in a
display for the range of the ordinate to be shown, this range information will
be used for scaling.

A for ampere is entered as the unit, and Milli (=107?) as the scaling factor.
This unit, which also belongs to the Type-Info, is carried along over the
complete signal graph and is calculated and checked in the arithmetic
modules (see description of the “VecOpVec” module).

The parameter DOUBLE[]determines the data type for the module. The
module expects a vector of real numbers of any length at the input. The
type DOUBLE could be defined alternatively, which represents a single real
number that is also called a real scalar.

With the help of these type reference the communication structure is already
validated when modules are connected.

4. Select the Scale2 module. The parameters are the same as for Scalef,
except for the signal range, which shall be specified with -5 to 5.

5. Add the VecOpVec module from the Module > Math menu to the
work area.

The VecOpVec module performs simple arithmetic operations with two real
vectors. The addition operation requires the same physical units. This is
implemented in steps 3 and 4, because the VecOpVec module checks the
units for consistency. In case of additive operations different units will result
in an error message. In case of multiplicative operations a corresponding
new unit will be calculated. Identical block length and sampling rate are
further prerequisites for a successful arithmetic operation with vectors.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

6. Open the dialog of VecOpVec (see pic. 3.2), and change the signale
name from VecOpVec to Sine+Noise.

YecOpYec |

Signal name: ISine+NDise

& 01=1+12 Cool=1412
Cool=1-12 Co0l=41-12
Co0l=1F12 Cool=1"2

] I Cancel Help

Pic. 3.2: Dialog of the VecOpVecmodule

7. Insert the AnalogChart module from the Module > Display menu into
the work area.

In this example parameterization shall be discussed in more detail. The
dialog for this module is shown in pic. 3.3. The Number parameter in the
Channels section defines three inputs, which are displayed in the tree-view
below. A double-click-left on such an entry activates the submenu for
channel setup (see pic. 3.4). Enter a value of 1 s for the X-range. The signal
name and the y-axis notation are taken from the Type-Info. This is done
automatically, if nothing is entered in the respective input lines. The colour
of the graph can be set with the Color button.

8. Connect the modules acc. to pic. 3.5, and click on the start button.
Pic. 3.6 shows the visualization of the individual signals. Apart from the units,
value ranges, and signal references of the individual data flows the date and

the time of signal generation are also displayed. This information that is
referred to as a timestamp is also carried in the Type-Info.

X9751025-C010080MSC

Kap. 3

The ICONNECT Module Library

AnalogChart

— Channels

]|

— Dizplay properties

Dizplay: I intern VI
‘width (i} 10

Height [mm] per channel: I‘“:I

™ Same dizplay

= | Same sealing for 2l raxes

Cancel Help

Pic. 3.3: Dialog of the AnalogChartmodule

Chamnel |

Signal name: ||

Drraw mode; IS.:n:.II
Herange: I'I

F-unit; I

-range:; I"I 5

Caolor: . |

o]

Cancel

| Hep

Pic. 3.4: Channel setup of the AnalogChartmodule

X9751025-C010080MSC

The ICONNECT Module Library

B demo_03

R

SinGen

Random - . .
« | [Pic. 3.5: Signal graph
“1 ofdemo 03
B AnalogChart1 [_ O]
[& *1le-002]
10._0q a1.o7.397
0&:32:11
=10 T T T T T T T T T 1
Jul 0.z 0.4 0.6 0.& 1 [=]
[& *1le-002]
5_0- a1r.o7.39%v
0&:32:11
=50 T T T T T T T T T 1
Jul 0.z 0.3 0.6 0.& 1 [=]
[& *1le-002]
15.0 al.o7.37v
08:42: 11
Jirnus+Hois
=15 T T T T T T T T T 1
Jul 0.z 0.4 0.6 o.a 1 [=]

Pic. 3.6: Addition of sine signal with white noise

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

| Please note:

@ Select multiplication (01 = |1 * 12) as operation instead of additionin
the VecOpVecmodule, and change the unitfrom A (ampere) to V(volt)
inthe Scale2module. Start the program again and observe the
changes compared to pic. 3.6. In the bottom coordinate system W, i.e.
A*V, is displayed as the unit

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.1.2 The VecOpScal Module

The above example introduced the VecOpVec module for arithmetic
operations with two real vectors. In practice it is often necessary to combine
a vector with a scalar, for example if in a measuring task a measurement
signal should be combined with a correction value for thermal stabilization.
The signal will be available as a vector, and the correction factor as a scalar.
The VecOpScal module has the following properties:

* The SCA input takes in A scalar when the value of the scalar has
changed.

* If there are data at the VEC input, these will be combined with the
current scalar.

* If there are data at the VEC input without any data having been read at
the SCA input at that time, a combination with the neutral element of
this operation will be performed.

In the example (demo_05) the amplitude of the white noise can be adjusted
interactively. The following steps are required for realising this program:

1. Place the SliderV module from the Module > User Input menu into
the work area.

Modules from the User INPUT group that allow access to the signal graph
during the application runtime will open a window with the corresponding
Windows dialog element.

2. Type in Amp as the Signal Name in the dialog of the Poti module
(see pic. 3.7), and with DOUBLE[1] define a vector of length 1 as the
signal type.

3. Place a Scale module into the work area, and use this to scale the
signal of the Poti module, which outputs values in the range from 0 to
1. Select Milli as the scaling factor. Do not enter a unit, because white
noise will be multiplied with this signal. Due to the addition with the
sine signal the resulting data flow must have the unit A.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

Slider E|
— Signal — Contraol
Input: i [T Deactivate on load
M arme: Ia'l'«mp [T Activate on stop
Type: {DOUBLE[] =] ongtat: |send element 7|
Declaratar: |TIME_DDMAIN =]

— Parameters
[T I'I Poszitionz: |1 m
Mir: IU Fregisior: |2 =5

Cancel | Help

Pic. 3.7: Dialog of the Potimodule

4. Add the VecOpScal module from Module > Math to the signal graph.
The dialog of this module is the same as in VecOpVec. Select the
multiplication function as the operation, and type in Amp as a
signal name.

5. Complete the program with the signal graph from example demo_04,
and connect the modules with each other (see pic. 3.8).

A validation check for:

identical data types,
identical signal declarators

is performed when the modules Scale3 and VecOpScal are connected.
If the check for identical declarators is not positive, an

confirmation
will be performed. ICONNECT will issue a warning stating that the type
declarators are not identical. This warning will be issued twice. In this
example it has to be confirmed with Yes. This warning may be confirmed for

every direction, if you agree with the declarators.

X9751025-C010080MSC

The ICONNECT Module Library

B demo_05 ==l

lnalogCharti

Pic. 3.8: Signal graph of demo_05

5. Click on the start button. At the Amp control element (see pic. 3.9)
you can adjust the amplitude of the white noise that is added to the
sine signal.

Pic. 3.9: Control element of the Potimodule

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

|

@

Please note:

When a connection is established between two modules the
corresponding validation strings will be compared. For this purpose the
graph editor sends the string of the source module to the target
module. This target module compares the strings and confirms or
negates the compatibility of the ports. Next the target module sends the
string to the source module, which then performs the check. If this
validation fails at one of the modules, the communication channel will
not be created. Double-checking is necessary because in this check
some modules adapt to the partner module with respect to their
method of operation. Such modules may be both the source and the
target module of a connection.

The validation string first contains the data type of the connection. With
the Scalemodule this is DOUBLE]]. The VecOpScalmodule expects
data of type DOUBLE[1]atthe SCAinput. These types are compatible
with each other. At the application runtime the VecOpScalmodule
detects whether Scaletransmits more than one data value per block.

In addition the signal to be transported on the generated
communication channel is assigned a designation (= type designator
orinterpretation). The DOUBLEtype does not state whether the signal
is a time, frequency, or control signal. The Scale module applies a
time signal called TIME_DOMA/Nat its output. VecOpScalexpects a
scalar, the interpretation of which is called SCALAR, at its input. If the
type declarators are not equal, the checking module will issue a
warning. Ifthe user decides that the interpretations of the signals are
compatible for his purposes, he will confirm the system’ s question with
Yes, and the communication channel will be created. Chapter 4
contains further details on data types and interpretations.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.1.3 The Formula Module

The next module from the Math group that will be introduced is the formula
interpreter Formula in example demo_06 (see pic. 3.10). In addition to the
formula interpreter the modules FuncGen, Scale, and AnalogChart will also
be used again. For these modules the same settings are used as in example
demo_5.

B demo_06 M=l E3
s

= ~

SinGent Farmulal #nalogChartt

-

KN I a2y

Pic. 3.10: Signal graph of demo_06

The dialog of the Formula module (see pic. 3.11) features an edit field for
entering the formulas. A formula is structured as follows:

Module output = f(module input a, module input n, ...)

In a formula the variable at the left side of the equal sign is interpreted as the
module output. The declarators at the right side of the equal sign are taken
as inputs. In the example used the formula

01 =-I1;

has been entered. The sine signal present at the input is inverted.

X9751025-C010080MSC

Kap. 3

The ICONNECT Module Library

T

rbl = -Il; =
H
0K St ax Cancel Help |
Pic. 3.11: Dialog of the Formulamodule
= AnalogChart1 O]
[& *le-002]
104 02.07.97
10: 44: 03
Jinus=
-1.0 T T T ; T T T Y)
i 0.z 0.4 0.8 0.& 1 [=]
[-1
1 04 02.07.97
10: 4d: 03
0l
-1.0 : T T T T . T)
0 0.z 0.4 0.5 0.& 1 [=]

Pic. 3.12: Inversion of a sine signal

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

The data types have to be entered for the individual variables in the formula
(= inputs/outputs of the module), except if a variable has the default type
(see tab. 3.1). The variable type determines the output type. It also decides
whether the Formula module calculats and sends new data to the outputs or
not. These actions are performed if there are data at the inputs that have a
data type with trigger properties. If there are data at the inputs that do not
trigger the calculation, the data will be taken into the module, but there will
be no calculation.

The type designator consists of the letter d (data type = integer) or f (data
type = floating-point), and a prefix. The prefix determines the characteristic
(scalar or vector) and the trigger property.

Characteristic Scalar Vector

Prefix ‘& % #

'I_'ype '&d' '&f 'Y’ "%f H#d' Hf 'd' 'f
designator

Data type SWORD | DOUBLE | SWORD | DOUBLE | SWORDJ[1] | DOUBLE[1] | SWORD[] | DOUBLE[]

Trigger YES YES NO NO NO NO YES YES

Default

Tab. 3.1: Data types in the Formulamodule

The type declarators are placed in square brackets after the variable name.

Examples:

Task: Define an input of type SWORD[1]
(= vector of integers with length 1).

Solution: . = 11[#d]

Task: Define an input of type DOUBLE

(= scalar of type floating-point without trigger property).
Solution: e = 12[%f]

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

In the formula of pic. 3.11 no explicit type definition was set for the varia-
bles, because the default type was chosen. In the example demo_07 the
formula was extended to

01 = -(pow(I1,12[%d]));

This generates a second input. The expected type is a scalar of data type
integer. Pow(base,exponent) defines the power function. Formula contains
a comprehensive functions library, the notation of which is similar to the
syntax of the C programming language. Please refer to the online help for a
complete functions reference.

The data for input 12 are generated with the Spin module from the

Module > User INPUT menu. The control element of this module contains
a spin-control. With left-clicks on the arrows the value of the output is
increased or decreased by 1. In the Spin module dialog (see pic. 3.13) the
signal type and the limits of the spin counter can be set. Apart from the
signal name, which is Exponent in the example, the initial values are not

changed.
Spin E |
— Signal — Control
Input: - [T Deactivate on load
Marme: ISpirﬂ [Activate on stop
Type: ISWDHD[‘I] j an ztart; Isend elernent j
Declaratar: |TIME_DDM.&IN =]

— Parameters
b &z |1 Q0 Stepsize: |1
Mir: ID

Cancel Help

Pic. 3.13: Dialog of the Spinmodule

X9751025-C010080MSC

The ICONNECT Module Library

Kap. 3

Start the program. Use Spin to vary the exponent of the power function,
and observe the effect this has on the signal characteristics.

= AnalogChart1 - |O] x|
(& *la-002]
1 o- 02.02._9&
08:40: 2l
i Sine
0.0
=l.0+ T T T T T T 1
] 0.z ! 0.& 1 (=)
-1
1 - 02.02._9a
08:40: 41
_ 01
0.0
=l.0+ T T T T T T 1
] 0.z ! 0.& 1 (=)

Pic. 3.14: Signal characteristic in the demo_07 program

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

Please note:

In addition to the type the complete Type-Infomay also be entered for
the output. Formula does not calculate the units and ranges’
automatically.

The demo_08program uses the following extended Type-Info.

Of1[f,name = “P”, min = -1, max = 1, unit = “V”, scale = 0.001] =
pow(11,12[%d])*-1;

Pis the name for signal O1. The value range of the signal is defined
from min = -1 to max = 1. Aunit V(volt) does not make sense
physically, but is suitable for demonstration purposes. The scaling
factor scaleis 0.001. It must also be noted that, if the Type-Infois
entered, the type of the output signal also has to be entered.

You can define several outputs, i.e. several formulas, within a Formula
module.

Please note that the exponent notation (e.g. 1E-2 for 0.01) is not
possible here.

The next chapter describes the modules of the Display group in more
detail. From this group the modules DigitalDisp and AnalogChart have
already been used. The chapter also explains how a user interface can be
designed.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

3.2 Modules of the Display Group

In this chapter you will learn about the visualisation possibilities of
ICONNECT. You will also see how a user interface can be designed with the
DisplayManager and InputManager modules.

3.2.1 The AnalogDisp Module

First another possibility of representing individual values with the
AnalogDisp module shall be demonstrated. The module can be configured
either as a pointer instrument or as a bar display. For the display range you
can determine

* fixed limits, or
* the limits of the Type-Info.

Both variants can be displayed in percent.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

AnalogDizp |
Disploy: [FRRNE | ficth () [£0
Height [mm]: |55
| natrurment: IF'-:linter device j
Direction: Ivertcal j B ackgroundcolor. . I
—HRange
kit b &
|n |1 W Tupelnfo [%
— Instrurment
Lowwer Limnit; Upper Limit;
':'2'|'2'fl---| ID.33 D:ull:urg...l IU.EE I:l:ull:urﬁ...l

Cancel | Help |

Pic. 3.15: Dialog of the AnalogDisp module

The Display parameter determines whether the module has its own display
window, or whether it is integrated in the display manager. If you select
Display > extern for a visualisation module, the module icon in the signal
graph will receive an output that can be connected to the DisplayManager
module.

X9751025-C010080MSC

The ICONNECT Module Library

= AnalogDizpl M=l EF | | = AnalogDizp2
Random (G4 Pl (1)
0.z25 o.75
D 1 T I| T l|
\/ 0 0.25 0.5 0.75 1
al: O.6000 Min: O0.00/)Jwval: O.45800 Min: 0O.48
Mean:0.5083 Max: 0.97|)|Mean:0. 4800 Max: 0.48

Pic. 3.16: The AnalogDisp module as pointer instrument with slave pointers
or as bar graph

The AnalogDisp module recognises the data format at the input. In its
operation mode it distinguishes between a single datum or a data block
with several values.

Block 1 |Block 2 |

Packet start

‘ Block n‘

Packet end

* Val Last value of a block

* Mean Mean value of a packet
* Min Minimum of a packet

* Max Maximum of a packet

If the AnalogDisp module functions as a pointer instrument, the Min and
Max values are visualized in the form of two slave pointers.

0 Please note:
0 The slave pointers do not refer to the complete measurement
@ sequence. The information Random (64)or P1 (1)that is shown in
pic. 3.16 displays the type of the data source and in brackets the total
of the data values (= multiple of the block size).

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

3.2.2 The Plot Module

Depending on the wiring of the X-input the Plot module (Modules > Dis-
play > Array) distinguishes between two operating methods:

X-input not connected Y-data are plotted over time
X-input connected Y-data are plotted over X

Flot1

Pic. 3.17: The Plotmodule

Start the demo_11 program. The Plot module visualizes the noise
generated by the Random module. This program forms the basis for further
extensions you will still add in this chapter. The noise is displayed in different
colours, which allows you to distinguish between warning and alarm limits.

i Plot1 O

Randam (& "1 e-003 gg;gf‘g
10.0— o
=]] A TR J| | Iil\lil(

IRE TR ISR N kit
2.0
-2.0—

L

-10.0 T T T T T T I T I 1
0.0 0.z 0.4 0.6 0.8 1.0

Pic. 3.18: Display window of the Plotmodule

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

Stop the demo_11 program and open the dialog of the Plot module (see
pic. 3.19). Type-Info was chosen for Y-axis scaling. The signal name,
minimum and maximum value, unit, and scaling factor correspond with the
information of the data packet at the Y-input. Auto was chosen for the X-axis
the axis scaling. From the sampling rate Plot calculates the time scale for
displaying the Y-data. In Auto-Range-Mode no signal name and no unit are
generated. Therefore the Label t and Unit s were entered.

Type in White Noise as Title or Subtitle. Use Precision to increase the
number of decimal digits of the axis. Start the program and observe the
changes.

You may also define warning and alarm limits to use the Plot module as a
visualisation tool in the field of quality inspection or monitoring. If the limits
are exceeded the colours will be changed. In the example the limits are set
to -3, 3, -6, and 6.

— Diizplay

Parameters I ‘I Size [mm] Wdidth; {100 Height |55

Dizplay: Iintern vl Border [rmm] |eft |1?.3 right: I'I'I.44 up: IS down; IS

~ Title

Title: I Font...l Title2: I Font...l ¥ Timestamp Font...l
Aues . . . :

Grid Type Log. Min [LEES Ticks Label Unit e+000 Frec. Label
= Iaulo j ID.D I'I.D Font...l It Is E Font...l
8 | o o o = N

— Curve: s - — Limnit: -

Dizplay Thick. Style Ornigin Fir. ILETS
Data: ILine j |1 vl I jID Eolor...l Warn: |-3 |3 Eolor...l
Statiztics: Inone j |1 vl I_j Color...l Alarm: I-E IB Calar...
Cuirzor: |1 vI I_vl Color...l : Iﬁ dd - blacks of oot

Blocks:]s=t = = - se?;?ass'l'?bl‘zgfgazkets
Cancel | Help |

Pic. 3.19: Dialog of the Plotmodule

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

As already mentioned in chapter 2.1.4 you can modify parameters during
the application runtime, if the parameter source is set to extern. The
following steps have to be performed for this purpose.

1. Select extern in the Plot module for the parameter source.

2. Insert the ParamConv module from the Module > SignalProcessing
> Convert menu into the work area. Connect the output of
ParamConv with the EXT input of the Plot module.

The ParamConv module operates as a parallel-serial-converter. Plot
expects the parameters at the input in serial form.

The pop-up window of ParamConv displays all the signals the Plot module
expects. For each signal you may define a fixed value or a control input.

3. Open the pop-up window of ParamConv, select the line
UBYTE[]{Title}, and type in White Noise in the Default field (see pic.
3.20).

ParamCony

Input Mame Drefault

LBYTE[iTitle} [White Noise |
UBYTE[HS ubtitle} | |
DOUBLE frhul} o |
DOUBLE W amMin} | |
|
|
|

DOUBLE fwamtdaxt |
DOUBLE {&larmbin} |

(I R I Y A Y

DOUELE{& armbd ax}

Pic. 3.20: Dialog of the ParamConvmodule

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

4. Double-click-left on the line DOUBLE{Origin}. Type in the value 0 in
Default value, and confirm your entry with OK.

With steps 3 (Title) and 4 (Zero point) you have now assigned fixed values
for the Plot module. ICONNECT enters this in the dialog of the ParamConv
module. In the Control column you will find the entry Value.

The warning and alarm limits should be variable during runtime. Therefore
the ParamConv module must be equipped with control inputs.

5. Open the pop-up window of ParamConv, select the lines
DOUBLE {WarnMin}, DOUBLE {WarnMax}, DOUBLE{AlarmMin},
and DOUBLE{AlarmMax}.

Two potis are connected directly to the inputs WarnMax and AlarmMax.
The Formula module negates the inputs for the values (WarnMax and
AlarmMax).

6. Complete the signal graph (see pic. 3.21). Enter signal type DOUBLE
and input Intern for the Poti modules. Edit the command line for the
two Formula modules with

01[%(f]=-11/&f];

When you start the signal graph now, you can adjust the warning and alarm
limits during the application runtime with the four potis.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
Bl demo_12.tc2 M=l E3

F
FaramConwi

T Jln[x]

:r_l cel o

g FarmulaZ Flat1

=T

S -
1| | v

Pic. 3.21: Signal graph of demo_12

Apart from the signals in the time range ICONNECT can also represent
binary signals. ICONNECT provides two modules for visualising binary
signals. The functions of DigitalChart essentially are the same as those of
AnalogChart, they will therefore not be discussed in detail any further.
BinaryDisp will be discussed with the Logic group.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.2.3 The InputManager and DisplayManager Modules

The InputManager and DisplayManger modules are used to group control
elements or output elements, respectively. The signal graph of demo_13
(see pic. 3.22) uses a simple user interface. As already mentioned above
visualisation modules can be set in such a way that they can be connected
with the DisplayManager. In an analog way modules with control elements
can be connected with the InputManager.

The number of outputs for the InputManager can be defined in Number of
displays (see pop-up window of the InputManager in pic. 3.23). The
control element is accepted in the InputManager as soon as an output of
the InputManager module is connected with the Poti module (see pic.
3.24).

2 demo_13.tc2

)
i

Scaled Crisphdgri

Jln[x]

cEl

H

A Farmulai

cEl

Wi Formulaz

Inputhdgr

FaramConwl

#

S

I'L

| [HL—

:

3

1

-
i

Pic. 3.22: Signal graph of demo_13

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

Input anager
Sethings [Enid
Murnber of displaps; = w-aniz [pivel] m
v Diraw barder around dizplaps
[Show/hidednput 'f-axis [piel]: L —
[Fast edit mode [Draw gnid

[Use az dialog
B ackground

[Set window ko top
Title: ||nputh-1gr2

[Hide o load

[Hide on stap Color: 1
s | _top_|

Pic. 3.23: Dialog of the InputManager module

= Inputhgrl M=]

i | T i

Harngrenzme Harngrenrea ATlarmgrense AlarmygrenFe

Minimamn M aximumm Hinimam HMazrimaam

-
1] | 3

Pic. 3.24: Control interface of the InputManagermodule

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

The size and position of a control element can be adjusted with the mouse.
This is done as follows:

1. Double-click-left in the window of the InputManager

The white backgrounded window indicates that you are in the edit mode. A
suitable grid (see Draw grid in the InputManager dialog) facilitates the
customisation of the input window.

2. Place the mouse pointer on the edge of the control element (see pic.
3.25a) and vary the size with pressed left mouse button. If you want to
change the position of a control element, place the mouse pointer
over the control element (see pic. 3.25b) and move the control
element to the desired position with pressed left mouse button.

T [T

Pic. 3.25a: Resize Pic. 3.25b: Move

A single right-click opens a pop-up menu which offers the possibility of
entering text, a line, or a rectangle. An already drawn object can be deleted
by means of the context menu. The edit mode is cancelled with a double-
click-left.

ICONNECT offers the possibility of hiding the window for the InputManager
as an option. In connection with logic modules and control signals (see
chapter 3.3) this allows you to define any dialog sequences for the user
interface.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

The principle of the DisplayManager is equivalent to the InputManager. The
procedure for designing interfaces also is the same. The DisplayManager,
however, has an additional input which prints the current status of the
DisplayManager on a printer when it is activated by a control signal (see
chapter 3.3).

The next chapter explains the logic modules and the difference between
data signals and control signals will also be discussed.

X9751025-C010080MSC

The ICONNECT Module Library

3.3 Modules of the Logic Group
With the help of several examples you will

* learn to perform control task in ICONNECT
* learn about new modules of the User INPUT and Display group

3.3.1 The Count Module

Count either counts

* blocks or

* packets (see pic. 3.28)

Input I1 of the module is compatible with any data types.

Pic. 3.26: Control element of the Button module

Start the demo_14 program. The pulse generator in the signal graph of
demo_14 is started with a left-click on the button B2 (see pic. 3.26) from the
Module > User INPUT menu. PulseGen supplies pulses with the values
Zero and One. The signals are generated with the time behaviour set in the
dialog (see pic. 3.27). The parameters are chosen in such a way that
PulseGen generates a positive edge every two seconds. The signal is
routed to the count input I1 of the Count module. The count of the Count
module increases with every edge from the pulse generator and is sent to
the corresponding output. The DigitalDisp module visualizes the count.

Please note:
Switching signals always have packet status.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

PulzeGen

Pulze Properties

Lagic HIGH [z):
Logic LOW [} |1

[Start with logic LOW

o frar: 0 Cycles
S SREt glfihe]
ak. | Cancel | Help

Pic. 3.27: Dialog of the PulseGenmodule

Count

Counter behaviour Configuration of the outputs

- Signal name of -
Parameters: |intem - counter autput |Cnunt8|gnal

Count criterian Output for pulze zignal
{+ Blocks Signalname: |F'ulseSignaI
£ Packets {* Pulze sighal before overflow [contralling)
" Pulse signal after overflow [displaying)
Bounds
" Switch zignal after counter overflow
ST&RT: |0 3:
Output that delivers file names
sTop: [10 = : -
Signal name: |Key8|gnal
Ei!ename [% iz
Restart after counter wildcard for) |P'BF'HZS””"“
[+ counter signall:

awerflow

Pic. 3.28: Dialog of the Countmodule

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

In the dialog of the Count module (see pic. 3.28) the values 0 and 10 are
entered as the counter limits. The counter will be restarted after an overflow.
Apart from the output of the count the count can also generate control
signals.

In the signal graph of example demo_15 the control signals of the Count
module are displayed with the BinaryDisp module. BinaryDisp displays the
status of binary signals with LED’s. As with the digital display it is also
possible to specify several inputs. Furthermore you may assign names to
the two signal states.

File names are used to control the file access of certain modules (see
chapter 3.4).

The term control signals was used several times above. Please observe the
difference between data signals and control signals:

* Control signals are one-dimensional vectors of type SWORD[1] and
have the interpretation BIN. The logic modules and all the modules
that communicate with control signals immediately respond to a
change at an individual input.

 Data signals are multi-dimensional vectors that have been created with
a certain sampling rate. The modules will only process such data, if
data are present at all the corresponding inputs. Only status changes
are transmitted.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
3.3.2 The UniGate Module

The logic gates can be found in the Module > Logic menu. These gates
realise logic operations (logic algebra). In all the modules of the UniGate
group you may invert both the inputs and the outputs.

Logic operation
Type Inputs
AND OR EXOR
UniGate2 2 v v v
UniGate3 3
UniGate4 4 v v

Tab. 3.2: Possible operations of the UniGate module group

Pic. 3.29 shows the configuration for a logic AND operation with two inputs.
Input 11 is inverted in this case.

Short notation:

Ol=HALR
UniGate2 |
— Properties — Mode
— Boolean operator— & Binamy control zighal

H ¥ & aND " Binam data vectar

DR | =0

a — Signal parameter
2 ——1I"| (" EXOR
ﬂame: IUniGate2

Cancel | Help |

Pic. 3.29: Dialog of the UniGate2module

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

The example demo_16 generates all the possible input combinations for the
UniGate4 module. The BinDeCoder module converts a decimal number
into binary signals. The BinDeCoder module can be assigned the following
coding types:

* Decimal - Binary
* Decimal = BCD (8421 code)
» Decimal > Grey code

Start the demo_16 example. The BinaryDisp module displays the states of
the four inputs and the result of the operation.

2 demo_16_tc2

igitalDizp
o
0

BinlbeCoderi

BinaryCrizp

Pic. 3.30: Signal graph of demo_16

Q Please note:

(W) The logic operations NAND, NOR, and XOR can be realised with the
basic functions AND, OR, EXOR, and NOT. For detailed literature on
the subject of logic algebra (Boolean algebra) please refer to the book
Halbleiter-Schaltungstechnikby Tietzke/Schenk.

X9751025-C010080MSC

[l <ap. 3 The ICONNECT Module Library
3.3.3 The FlipFlop, Mono-Flop, and T-FlipFlop Modules

ICONNECT flipflops simulate circuits used in electrical engineering. They
have the ability to function as a storage element. They are able to take up
certain states without time limitation. At present the following flipflop types

are realised:
* RS-flipflop Set-reset flipflop, basic flipflop type
* Mono-flop Pos. or neg. edge triggering, variable
hold time from 0.01 s to 10,000 s, retriggerable
* Tlipflop Pos. or neg. edge triggering

The signal graph in pic. 3.31 shows the gating of two mono-flops. The
flipflops are triggered by the negative edge of the PulseGen1 module.

Both mono-flops synchronously take up the logic status One, but due to
different hold times they drop one after the other (see pic. 3.32). The
DigitalChart module visualizes the signals. Start the demo_36 example,
vary the parameters of the modules and observe the effects.

B demo_36 M=l E3
JuL I o
: i

CrigitalChar

iy

FulseGend | MonoFlop2

[

m

ManoFlap

1] | AW

Pic. 3.31: Signal graph of demo_36

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

= DigitalChart1 O] =]
1 FE_07.97
Takt o | | | | | | | | 0&:06: £5
Mono-FFE ;- |_| |-| |-| |-|
Mono-FF1 ; | | .
o [=] z5

Pic. 3.32: Signal characteristic of demo_36

Q Please note:

%@%@ The input combination Setf0]and Reset[0]is not defined for the RS-
flipflop. In this case the RS-flipflop supplies the output state of the last
valid input combination.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

3.4 Saving and Loading Data
In this chapter you will learn

* how to save data in files and load data from files
¢ how to use the different file formats SaveAscii, LoadAscii,
SaveTable, LoadTable

ICONNECT offers two different file formats. The SaveAscii and LoadAscii
modules from the Module > Data I/O > File menu save and load files in the
ASCII format. SaveAscii adds additional time information. With LoadAscii
you can load data in accordance with the time behaviour they were saved.

The SaveTable and LoadTable modules save and load data in the form of
tables. A column of the table corresponds with a module input. The format
is compatible with spreadsheets in office packets, such as e.g. MS Excel.

Since the parameterisation of the two types is almost equivalent, we will
only describe the process of saving and loading ASCII files here.

Load the demo_17 example, and open the pop-up window of SaveAscii
(see pic. 3.33). Determine the path and the file name of the file under the
item Browse... . The file name will be determined during application

runtime. An initial file name must still be defined, because when the
application is started a file with the initial file name will be opened.

SaveAscii |
Parameters: - [T append Mode

Eilerame: IEZ'\TEMF"\MESS Browse. .. |

Cancel | Help |

Pic. 3.33: Dialog of the SaveAsciimodule

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

With the Apend Mode item you can determine whether the data will be
added at the end of the already existing file after an application restart, or
whether the old file will be overwritten.

You may also assign the file name depending on the runtime through the
EXT input (= external input). For example the file name may be generated
automatically with the Count module. In this case the count is connected
with a key word. This requires the following steps:

1. Open the dialog of the Count module. In the field Output that ... >
Filename type in the path ¢:\Temp\Mess%.dat for file saving.

The path information consists of

Prefix Path and file name
% Count
Suffix File extension

In the example select c:\Daten\Mess as the prefix, and .dat as the suffix.
During key word generation the count will be entered at the position of the
percent sign. This means that a definite file name will be generated for every
measurement.

2. Open the dialog of the SaveAscii module (see pic. 2.34). Type in the
path c:\Daten\Mess.

Start the program and check the generated.
Q Please note:

A0 ICONNECT does not generate any paths. Please select an existing path
or generate a path, if necessary.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library

Savefsci E |

Paameters: [estemn v] ™ #ppend Mode

Offncn KA Browse. .. |

Surhen wr I'_j Termp

=1 Log

D atenarrs: ||'u'|a$£4 Ciffrien I
Latety: | ﬂ Mbbrechean |

Pic. 3.34: Dialogs of the SaveAsciimodule

The FileDIg module is another possibility for generating a file name during

application runtime. This module calls the Windows file dialog, it is primarily
used for reading files.

Inthe demo_17 example you created files. ICONNECT offers the possibility
of viewing saved measurement values at a later time. These files shall now
be loaded. Please perform the following steps:

1. Load the demo_19 example.

2. In the signal graph open the dialogs of the FileName and LoadAscii1

modules. Select the path you have assigned to the measurement data
ofdemo_17.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

3. Start the program. Press the Enter button (see pic. 3.35) in the control
element of the FileDg1 module. This starts the Windows file dialog for
selecting the desired measurement file.

FileDIg1 _ [}
I FileDr gl | Browsze. .. I

IE:'\TEMF’&M eesldal ®

Pic. 3.35: Control element of the FileDlgmodule.

Please note:
@ The appendix (see chapter 9.2) contains more information on the
K”_J? subject of saving and loading data.

=

X9751025-C010080MSC

[l <ap. 3 The ICONNECT Module Library

3.5 Modules of the Signal Processing Group

In this chapter you will learn about the possibilities

- for limit value monitoring

- for cutting data

- for generating trigger events

- for filtering and smoothing data

At the end of the chapter some mathematically more complex modules like
FFT (Fourier transformation) and CFFT (complex Fourier transformation) will
be introduced.

The Limits Module

The Limits module can be used for solving different tasks.

Limit value monitoring

The demo_20 example checks whether a signal exceeds certain limit values.
In the Limits dialog (see pic. 3.36) two limit values can be defined. For limit
value monitoring the two outputs S> and S< are connected. These outputs

supply a binary signal of type SWORD[1], if the range given in the dialog is
exceeded in upward S> or downward S< direction.

Limits |
Paramneters: ~
bl & IE":'
Min. |1 u

Limits1

Pic. 3.36: Icon and dialog of the Limits module

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

The modules FuncGen and Scale generates a displacement signal with a
measuring range of 100 um. In the limit value module a range from 10 um to
90 um is defined. If these limit values are exceeded in upward or downward
direction, this will be displayed by two BinaryDisp modules. The complete
visualisation is performed in the display manager.

Signal limitation

The Limits module can be used for limiting signals. When the permissible
range is exceeded Limits will keep the limit value until the original signal lies
within the limit values again (see pic. 3.37). In this case the LIM output (see
demo_21 example) must be connected.

EE DizpMaorl |_ O]
Grenzwertiuberwachung
N /N .

|/ \\ / \ T
J— A L
_ \ W/ \Wf

4| | v o

Pic. 3.37: Signal limitation with Limits

X9751025-C010080MSC

(XY <ap. 3 The ICONNECT Module Library
Cutting of signal parts

In combination with Limits the Edges module can cut signal parts. For this
purpose the signals must be present in packet form.

Limits generates binary vectors at the outputs >, OK, and <. These vectors
characterise the correlation between the limit values and the input data. In
the demo_22 example the output > of Limits is connected with the input
BIN of Edges. Edges then manipulates the original signal at input 11 with
the binary vector. If the datum at the index position x of the input vector lies
within the permissible range, the value 0 is written into the output vector at
this place. If the value lies above the specified limit value, a 1 will be
entered.

For the part of the data to be cut the range must be correspondingly
defined in the dialog of Limits. The generated binary signal is passed to the
Edges module.

Data vector Binary vector
—> —>
Packet n+2 ‘ Packet n+M Packet n Packet n\ Packet n-1 S
7781858581777369 01111000

Pic. 3.38: Generation of a binary vector by the Limits module

Demo_22 implements an edge detection. The program simulates input data
in the range from 0 um to 100 um. All the data of the original signal that lie
between the first entry and the last exit of the original signal into and from
the range above 80 um will be cut.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3 &)

For some tasks it is necessary to remove the edges of a cut out range in
order to gate signal irregularities. A start and stop limit in percent can be
defined in the Edges dialog. In the demo_22 example the first and the last
5% of the signal are gated.

Another possibility is to cut out only the part of the signal that lies above the
limit value (see demo_23 example). For this purpose select the Block of 1-
signals in the Edges module and enter the second block. This parameter
set cuts out the peak of the second sine wave.

Please note:
0 As an alternative you can cut out signal parts by replacing Edgeswith
Packet and Limitswith Trigger.

Trigger, however, does not expect data in packet form. With this you

can derive certain events from data that are recorded in continuous
mode.

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
3.6 Modules of the Statistics Group

3.6.1 The DStatistics Module
DStatistics calculates descriptive statistical values. At present these are:
‘Number, minimum, maximum

-Mean value, standard deviation
-Skewness, kurtosis

Pic. 3.39: The DStatistics module

CrStatistics1

The inputs are:

- Data input
- Cal Calculate
-Res Reset

The statistical output values are calculated and output as soon as
- a One signal is present at the Cal input, or
- a High level is present at the Res input, or
- a packet end is achieved.

The statistics results are cumulated until
- the Res input is reset, or
-the measurement is stopped.

Please note:
(0 High at the Reset input does not lead to a reset of
a display that is connected with DStatistics

Inthe demo_24 example the Count module generates a pulse signal at
every second block effecting the calculation of the descriptive statistical
values. The Reset button is used to reset the buffer of the DStatistics
module.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.6.2 The Hist Module

Frequency distributions are used for monitoring the quality of, for example,
a production process. The Hist module evaluates the abundances of the
individual events.

HIST
Pic. 3.40: The Histmodule

Hi=t1

Hist features the following parameters:

* Range Value range to be displayed in the histogram
* Classes Number of possible discrete events on the abscissa
* Scaling Scaling of the absolute frequency on the ordinate

The demo_25 example evaluates the series of numbers of a random number
generator. The Plot module visualizes the results of Hist.

i Plot =]

Histogramm 221033
03 44:33

1.00—

0.80—

0.60—

0.40—

0.20—

0.00—
-5.00 -3.00 -1.00 1.00 3.00 £.00

Pic. 3.41: Histogram of a random number generator

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
3.6.3 The Sort Module

The Sort module is used to solve control tasks. In its dialog you can define

minimum and maximum for the value range
the number of sorting classes

the class limits

the type of the output signal

Based on the value range and on the number of sorting classes Sort
calculates the class limits. If you want to select the class limits manually,
double-click on the class limit to be changed and edit this.

As the output quantity you either select a vector of type DOUBLE[], which
determines the number of values belonging to this range for every sorting
class, or a binary control signal SWORD[1], which can, for example, control
a sorting station.

Inthe demo_26 example (see pic. 3.42) random numbers are supplied to
the Sort module for sorting. The sorting module generates a One signal at
the output for every value corresponding to the class.

B2 demo_26_tc2 =]

Sorterd BinanyDrisp
—

CrigitalDrizp1

Counti il

KN |

Pic. 3.42: Sorting of random numbers

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3
3.7 Modules of the FlowControl Group

In this chapter you will learn some functions for controlling the program flow
in ICONNECT.

* Software loops Implementation of adaptive algorithms
* Multiplexer Assignment of data to different partial graphs

With these functions you can split up an application into different processing
phases.

3.7.1 The ForNext Module

ForNext generats a loop with defined limits. The demo_31 example (see
pic. 3.43) calculates the value

E =100 * 4 + starting value

in a loop. In the dialog of the ForNext module 0 is defined as the lower
loop limit, and 99 as the upper loop limit. As data type a vector of type
DOUBLE([] is processed. In the formula interpreter (Formula module) the
calculation 01 = I1 + 4 is performed, i.e. the multiplication is reduced to an
addition. With every loop run the value 4 is added to the sum formed so far.

B demo_31.tc2 _ | O]
FY
T}
Diigital
T
Dirp
DigitalDispA
ConstEntry1 T ofNext! d F
Faormula+
-
1] | AL

Pic. 3.43: Signal graph of demo_31

X9751025-C010080MSC

Kap. 3 The ICONNECT Module Library
3.7.2The DEMUX Module

DEMUX is able to direct data into different partial graphs. In the demo_32
example (see pic. 3.44) nine out of ten data packets are directed to the first
display, and one is directed to the second display. The counter Count1
generates a 1-signal at its pulse output before counter overflow. This signal
is used to switch the demultiplexer.

B demo_32 tc2

inaryDrizp

DEMLUET AnalogChart

Fandom

4| | M

Pic. 3.44: Signal graph of demo_32

It must be ensured that the control data (switching of the demultiplexer) and
the signal data are correctly synchronised.

The DEMUX module is ready to perform calculations (see also chapter 6.2),
if data are present at input I1. In order to guarantee that the demultiplexer
switches at the right moment, the pulse signal must not arrive at the module
after the data from the random number generator. Otherwise it might be
possible that DEMUX still transports these data before the pulse signal
arrives. DEMUX is ready to perform calculations as soon as there are data
from the random number generator. The counter also is ready as soon as
Random provides the data.

X9751025-C010080MSC

The ICONNECT Module Library Kap. 3

The module with the higher priority is executed first. The priority is encoded
with 16 bit and may have values from 0 to 65535. The default value is 255. In
the example the Count module has the priority 256.

A right-click on the Count module icon opens a pop-up menu, where the
Priority... setting can be activated with a left-click. Type in the priority of the
module (see pic. 3.45).

Modul Prionty Setup E |

Priarity:

hodule with a higher number are proceszed
ealier.

Ok I Cancel | Help

Pic. 3.45: Dialog for priority setting

This determines that the counter is executed before the demultiplexer.
DEMUX will only calculate, if both the data from Random and the pulse
signal from the counter are present.

[Please note:
(0 This example is the principle design for a measurement arrangement
@ that performs a calibration measurement once within ten

measurements.
DEMUX E|
Murnber of Outputs; 2 =
[rata-Signal Format———— Contral-Signal Input-Farmat——
" Binary Data Signal " Binary Control Signal

o Q ™ Decimal Control Signal

Cancel Help

Pic. 3.46: Dialog of the DEMUXmodule

Kap. 3 The ICONNECT Module Library

The demultiplexer processes the data types SWORD[] and DOUBLE[]. The
multiplexer may be controlled both by binary and by decimal signals. These
data types can also be transferred by the demultiplexer. The data type can
be chosen in the dialog (see pic. 3.46).

With a decimal control signal the number of data outputs can be varied. It is
then possible to perform demultiplexing with any number of outputs.

In the demo_33 example the MUX multiplexer is used. In this example two
data sources are synchronised together on one display. This is the principle
design of a signal graph that combines two alternative measuring stations in
one processing unit.

In this chapter the most important principles of ICONNECT were introduced.
The chapter also provided an overview of the module library. The reader
should now be able to generate small applications with ICONNECT himself.
The next chapter will summarise information about the Typelnfo and about
communication between the modules.

X9751025-C010080MSC

Communication and Type Information Kap. 4

4. Communication and Type Information

Communication in ICONNECT is performed in blocks. The smallest unitis a
single data value generated by a module managing a data source. Such a
data source may be a HW-interface such as for example an I/O board or a
file I/O module or a similar module.

The calling of a module causes certain management efforts. Calling by a
single data value consumes unnecessary computer resources. In order to
keep the number of calls as small as possible the data are gathered to form
blocks. The size of such a block must always be set depending on the
application.

The packet mechanism was introduced for synchronizing data blocks in the
graph. A packet is a number of blocks that constitute a complete unit. For
example this may be all blocks belonging to an individual part.

If two packets meet on a communication channel, there will be more data
than the computer can process. ICONNECT will generate an error message
and stop the operation. With this “real time condition” the data are
synchronised in the graph, because packets can not overtake each other. In
case of modules that only process packets as a whole the individual blocks
(block 0 to block n+1, pic. 4.1) are grouped by means of additional
information that is contained in the communication channel.

Type-Info
Block | Block | Block | Block e = Module
n+1 n 1 0
Packet Packet Packet
end centre start

Pic. 4.1: Information and data blocks in ICONNECT

X9751025-C010080MSC

Kap. 4 Communication and Type Information

In the channel a type information (= Type-Info) is added to each packet,
with a new type information being generated for each packet. In the
demo_34 example (see pic. 4.2) the Typelnfo display (Module > Display >
Debug > TIDisp) is connected to the function generator. This display can
be used for testing signal graphs. TIDisp displays the Typelnfo and the
packet status of the communication channel (see pic. 4.3)

Secaled TIDisp1
Sintzent

Pic. 4.2: Signal graph of demo_34

TIDisp contains the following information:

Signal name Name of the signal
Min. range Lower limit of the measuring range
Max. range Upper limit of the measuring range
Sampling rate The sampling rate data are generated with
Unit Physical unit
Packet status Start, centre, stop, complete
TimeStamp Time stamp of signal generation
[I1: o
Signalname : Sinus
HMin.range: -10
Max.Range: 10
Samplerate: 100
Unit: A *1e-003
Paketstatus: Stop
TimeStamp : 870762984290
Tue Aug 05 08:36:24 1997

4| | M

Pic. 4.3: Type-Info of demo_34

In the dialog of the function generator the number of blocks in the packet
can be varied. The changes of packets status during communication are
visible in TIDisp module. All other information are only modified once per
packet, irrespective of the number of blocks per packet.

X9751025-C010080MSC

Communication and Type Information

Kap. 4

ICONNECT modifies the units in accordance to the algorithms (see also
chapter 3.1). ICONNECT uses all the Sl units according to table 4.1.

Quantity Unit name Unit sign
Length metre m
Mass kilogram kg
Time Second S
Elec. current Ampere A
Thermodynamic temperature Kelvin K
Amount of substance mol mol
Luminous intensity Candela cd
Table 4.1: International units
ICONNECT derives the following units as per table 4.2.
Quantity Unit sign Derivation
Activity Bqg s”™-1
llluminance Ix Imm”™ -2
Pressure Pa Nm~™-2
Electr. Capacity F CV™-1
Electr. conductance S AV”™1
Electr. voltage \ WA~™-1
Electr. resistance Q VA™-1
Energy J N m
Energy dose Gy Jkg”™-1
Frequency Hz s -1
Inductivity H VsA™-1
Force N mkgs”™-2
Charge C As
Power W Js™-1
Luminous flux Im cd steradian
Magn. flux Wb Vs
Magn. flux density T Wbm~™-2

Table 4.2: Derived units in ICONNECT

X9751025-C010080MSC

m Kap. 4 Communication and Type Information

Apart from the packet status and the type information the data type (e.g.
DOUBLE[], SWORD, ...) and its declarator (e.g. TIME_DOMAIN, BIN, ...) are
also important for the communication of two modules. The following data
types are used for module communication:

DOUBLE 8 byte floating-point number
FLOAT 4 byte floating-point number
SWORD 4 byte integer (with sign)
SDWORD 4 byte integer (with sign)
UBYTE 1 byte integer, Ascii-encoded
UWORD 4 byte integer

UDWORD 4 byte integer

TYPEINFO Type Info

These types can be used to create arrays (= vectors) of definite length (e.g.
DOUBLE[3]) or of indefinite length (DOUBLE[]). Arrays with different definite
lengths are always incompatible. A vector of definite length is compatible
with a vector of indefinite length. During runtime it will be checked in the
modules whether the data can be combined with each other. For this
purpose the length of the data block is contained as the first value in each
data block (Type-Info, pic. 4.1). This way the module determines how many
data are present at the input for processing.

In the demo_35 example a data vector is explicitly represented with the Spy

module. This module is compatible with all the data outputs listed above
and can therefore be used for testing a signal graph.

Please note:
@ The appendix (see chapter 9.1) contains more information about data
types.

X9751025-C010080MSC

User Administration Kap. 5

5. User Administration

ICONNECT includes a user administration function with individual rights and
passwords. There are action rights and administration rights

* Actions Execution of a signal graph, parameterisation (setting of
parameters in the module dialogs), and editing
(generation of signal graphs).

¢ Administration = Administration of users

The execution right allows the user to start, stop, and pause signal graphs.
With the parameterisation right the user can perform settings by means of a
right-click with the mouse on a module, a connection, or a window
background (identical with measurement - properties). The editing right
allows the user to add, delete, and move modules in the signal graph. It
also allows all the other editing functions from the Edit menu.

In the user administration the user will only see the entries that he is allowed
to change in accordance with his administration rights. For example a user
with three administration rights will see all the entries. A user without any
administration right will not be able to open the user administration function.
The user is only allowed to see and change the rights he has himself. A user
without editing right can neither see nor edit the user rights. If a user has an
administration right for a group, but he is not in that group (he may, for
example, execute administration functions on group 2, but may not edit this
group himself), the action right is also deactivated. He may neither see nor
change this right in an entry.

X9751025-C010080MSC

Kap. 5 User Administration

The dialog for user administration you get by the menu

Extra > User Management. The selected entry is displayed on the left side,
and the corresponding rights on the right side. If one or several rights are
deactivated (with grey background), the respective user does not have the
corresponding administration or action rights. Every user must be assigned
a password (at least one character), which has to be confirmed in the
second line.

Uszer Management Ed |

User: — zer autharization

ITESH j ¥ Execute [group 0]

¥ Parameterize [group 1]
[Edit [group 2]

V¥ Administrate user group 0
[Administrate uzer group 1
[Administrate user group 2

Fazsword: I

Werfication: I

Save | Delete | Cloze I Help

Pic. 5.1: User management dialog

To create a new user type in the name in the User field and set his rights and
his password. When you have entered all data, confirm with a left-click on
the Save button.

X9751025-C010080MSC

User Administration Kap. 5

Please note:
@ Ifthe User administrationdialog is exited without saving, the user
data just entered will be lost.

If you want to change the settings for an existing user, select this user in the
User field. The rights can then be redefined. The new settings must be
saved, again requiring password entry.

A user can be deleted by choosing him in the selection box and then by
activating the Delete command. There will be no warning when this is done.
The user will be definitely deleted.

A left-click on the Cancel button closes the dialog.
Every user has the right to change his password. For this purpose the old
password then the new password has to be entered. An empty password

may also be used, simply by entering the old password and confirming it
with OK. The dialog can be found in the Extra > Change Password menu.

Change Password EH |

Qld Paszword: I

Hew Pazsword: I

Werify new Password: I

] I Cancel | Help

Pic. 5.2: Change password dialog

X9751025-C010080MSC

Kap. 5 User Administration

X9751025-C010080MSC

Tips & Tricks Kap. 6
6. Tips & Tricks

6.1 Scheduler

In ICONNECT several signal graphs can be opened and started at the same
time. In this parallel type of execution several signal graphs share the
processor time (pre-emptive multithreading). If CPU reconfiguration is low,
all the graphs seem to run simultaneously and without influencing each
other. If CPU reconfiguration increases, however, it makes sense not to
distribute the calculating time uniformly, but to give preference to time-
critical sequences. This can be achieved by assigning a higher priority to
the critical thread.

For this purpose open the parameter dialog of the scheduler (Measurement
> Properties). The default setting for the priority is high (see pic. 6.1). This
parameter can be set to low, if required. A signal graph will only be
processed, if free calculating time is available.

The low priority stage will still have preference compared to other
applications. If you want to assign CPU time to other Windows applications,
this must be specified in the time behaviour. For this purpose edit the
Hold-on-time after loop field (default: 50 ms). Calculating time will be
assigned prior to the cyclic processing of the ICONNECT source modules
by the scheduler. The minimum set hold-on-time will be assigned to
competing applications. If the nominal runtime is higher than the set hold-
on-time, the computer will wait until this time is achieved. You can set a
constant loop runtime that does not depend on the module calculating
times.

|| Please note:

@ Since Windows is not a real-time operating system, the correct
observance of time specifications can not be guaranteed! All the time
settings are subject to relatively large fluctuations, especially in case of
higher computer or memory reconfiguration. You should therefore never
work at your computer’s performance limits. Deactivate the virtual
memory in the system control panel in order to avoid swapping of
virtual memory.

X9751025-C010080MSC

EEl Kap. 6

Tips & Tricks

Flow Control - Properties

Tirning
Wwiait after loop:

1=
10 mzec

Warning! Enter values <10 mz anly an wery Fast
computers and O mz only on dual processors,

10 s
evens [4 3: miodule(s)

Dezired loop time:

Wwait after processing madule:

Sighal graph parameters

[Automatic start after loading

[+ Mo automatic start for user of group 2
[Hide signal graph far users group 0
[Hide signal graph for uzers group 1
¥ Do not increase baze pricrity

[Fig dizplays on loading

Briority: | TIME_CRITICAL =l
Log file
Mamme: | Search [Activate profiler
Error u:ompens‘ﬂtion | Cancel Help
|
\\\\
\
\
\\ﬂ
Compensate error
Restart when one of those erors occurs
[Block size emar
[Asithmetic ermar
[%wD erar
[Buffer averflow
[Erar on exemal input
[Block-size differs
[Input states mismatch
[Memony emar
[Different sampling rates
[Mo connection to network. sender
Pic. 6.1: Scheduler dialogs
9 (1] | Cancel Help

X9751025-C010080MSC

Tips & Tricks Kap. 6

If you want to execute a signal graph automatically when ICONNECT is
started, select Autostart after login. In the Execution (group 0)
authorisation level your can hide the signal graph. By doing so you gene-
rate a signal graph for a runtime-version of an ICONNECT program.

The file that can be set under Log File records error messages (if Restart
when one of those errors occurs is activated, see pic. 6.1) and module
runtimes in Debug-mode:

Signalgraph FFT:*** Init xx A
Execution times for signal graph FFT
Modul: Randoml Count:15 Avg:10 Max:60
Modul: FFTI1 Count:15 Avg:26 Max:60
Modul: Plotl Count:15 Avg:0 Max:0
Signalgraph FFT:*** Done xx A

Signalgraph FFT:*** No Restart ***

All the time data are given in ms (with a time resolution of the
measurement of 10 ms). Apart from the average calculating
times of the modules the number of calls (count) and the
maximum times are recorded.

X9751025-C010080MSC

Kap. 6 Tips & Tricks

6.2 Interpret Programming

The Interpret module is a simple interpreter and allows the programming of
individual tasks and functions. An editor for entering the program sequence
appears when the dialog is started. The predefined functions are described

in the online help.

An Interpret program is structured as follows:

1. Declaration of inputs/outputs and variables

2. Initialisation phase (init) Execution of initialisation jobs, such
as for example memory allocation, or
loading of drivers

3. Execution phase (execute) Execution of the algorithm

4. Finishing phase (done) Signal graph has been stopped,
finishing jobs such as for example
deallocation of memory and
hardware resources

6.2.1 Input/Output Declaration

The key words input and output are used for defining module input ports
and module output ports. A port declaration is structured as follows:

Port direction [trigger attribute] Port name (validation information);

Port direction: input | output
Trigger attribute: trigger
Port name: String that starts with a letter and consists of

letters, numbers, and “_”.

Validation information: “Data type”, “Declarator” [, “Data type”,
“Declarator”]

Data type: SWORD | SWORD[1] | SWORD]] |
DOUBLE | DOUBLE[1] | DOUBLE]] |
UBYTE[] | TYPEINFO

Designator: BIN | TIME_DOMAIN | Typelnfo |

any String

X9751025-C010080MSC

Tips & Tricks Kap. 6 E
6.2.2 Declarating Variables

Variables in the Interpreter module have global validity. Initialisation during
declaration is not possible.

Example:
incorrect: int i=0; correct: inti; i=0;

Variables are declared individually, comma lists are not allowed.

Example:
incorrect: int i, j, k; correct: int i; int j; int k;

Variable type Variable name [‘[‘Array size’]’];

Variable type: char | int | double

Variable name: String that starts with a letter and consists of
letters, numbers, and “_”.

Array size: Positive integer > 0

6.2.3 Calling up Predefined Functions

All the variables of the parameter list of functions are transferred as variable
references (call-by-reference). This means that no pointers are required in the
Interpreter module.

Example:

int Len; int Address,; int Status,; int erg;

char recv[41];

erg = enter(recv, 40, Len, Address, Status);,

Len and Status are return values (reference variables).

X9751025-C010080MSC

m Kap. 6 Tips & Tricks

6.2.4 Program Sections

The initialisation phase (init) is only executed once prior to the first
execution phase (i.e. after Measurement | Start). It is used for initialising
variables or hardware components. During the initialisation phase access
to input data is not yet possible.

The execution phase (execute) is performed with every program run.

The finishing phase (done) is processed only once - after the last execution
phase

(i-e. after Measurement | Stop).

Conventions:

* All the sections are optional

* An empty program will be accepted

* At least a variable or a port must be declared before the first section

* Declared sections must not be empty

» Parameter transfers to functions and return values are not possible
(use global variables!)

Example 1 (structure of an Interpret program)

input trigger il (“TYPEINFO“, “TypeInfo"“, “DOUBLE[]"“,
“T'IME DOMAIN') ;

output ol (“TYPEINFO"“, “TypeInfo“, “DOUBLE[]",

“T'IME DOMAIN') ;

int 1i;

init

X9751025-C010080MSC

Tips & Tricks Kap. 6
6.2.5 Read/Write Operations on Streams

Input data can only be accessed within the execute section. Access to the
input variable i1 is performed in the same way as the access to (array)
variables. Access to individual elements of o is not permitted in order to
ensure that the output vector variable o is completely filled. Therefore only
the < < operator is permitted for output:

Example 2 (input/output):

input trigger il (“TYPEINFO“, “TypeInfo"“, “DOUBLE[]"“,
“T'IME DOMAIN™) ;
output ol (“TYPEINFO"“, “TypeInfo“, “DOUBLE[]",
“T'IME DOMAIN™) ;
int s;
int 1i;
execute
{
// ol << il; is permissible, access to array elements
// 1s not possible
s = size(il);
for (i=0; i<s; ++1i) // ++i is faster then i++
//(1 =1+ 1)
{
0ol << 11[i] * 3.0; // output
}
}

X9751025-C010080MSC

Kap. 6 Tips & Tricks

6.2.6 The Type-Info Structure

In example 2 only data without type information are treated and output.
Since the value ranges of the signal that are necessary for scaling are
missing, display e.g. in the Plot module is not possible. Example 3
demonstrates the necessary steps for Type-Info treatment:

Example 3 (copying the Type-Info):

input trigger

11 (“"TYPEINFO"“, “TypeInfo", “"DOUBLE[]", “"TIME DOMAIN") ;
output

ol (“"TYPEINFO"“, “TypeInfo",“"DOUBLE[]", "TIME DOMAIN"“) ;
char name[20]; char unit[20];

int erg,; int status;

double d; double timestamp,; double samplerate,; double
rangemin;

double rangemax,; double scale;

typeinfo kopieren()

{

ti copy(ol, 1il);

// copies name, timestamp, samplerate, rangemin,
// rangemax, unit, scale,

// but no status

status = ti getstatus(1il1);

ti setstatus(status, ol);

}

typeinfo lesen()

{

ti getname (name, 1il1);

timestamp = ti gettimestamp(1il);
samplerate = ti getsamplerate(1il1);
rangemin = ti getrangemin(1i1);
rangemax = ti getrangemax(1il);

erg = ti getunit(unit, il);

scale = ti getscale(il1);

status = ti getstatus(1i1);

}

X9751025-C010080MSC

Tips & Tricks

typeinfo setzen()

{

ti setname(name, o1);

ti settimestamp(timestamp, ol);
ti setsamplerate(samplerate, ol);
ti setrangemin(rangemin, ol);

ti setrangemax(rangemax, ol);

erg = ti setunit(unit, ol);

ti setscale(scale, ol);

ti setstatus(status, ol);

}

execute

{

typeinfo kopieren() ;
typeinfo lesen();
typeinfo setzen();
// other actions

J
6.2.7 Interpret as a Data Source

If no input is declared with the trigger attribute, the Interpret module is
called up with every scheduler cycle. This can be used for modelling data
sources.

Example 4 (Interpret as a source):

output ol (“TYPEINFO“,"“T'ypeInfo",“SWORD[]",“"BIN") ;
int 1i;
init

{

i=0,

}
execute

{

typeinfo setzen();
ol << 1;

i = ~1 & 1;

}

The example generates a control signal (01010 ... sequence).

X9751025-C010080MSC

Kap. 6 Tips & Tricks
6.2.8 Trigger

Trigger inputs, i.e. inputs for which the trigger attribute is specified, are OR-
operated as a default. The execute section will be called up if a signal is
present at one of the inputs. The TRIGGER = T_AND variable can be used
for setting an AND operation as trigger condition. With this variable the
module is ready if there are signals at all the trigger inputs.

Example 5 (Trigger):

input trigger
i1 (“TYPEINFO"“, “TypeInfo", “"DOUBLE[]", “"TIME DOMAIN") ;
input trigger
12 (“TYPEINFO"“, “TypeInfo", “"DOUBLE[]", “"TIME DOMAIN") ;
output
ol (“TYPEINFO"“, “TypeInfo", "DOUBLE[]", "TIME DOMAIN") ;
TRIGGER = T AND;
int sl; int s2; int 1i;
execute
{
sl = size(11);
s2 = size(12);
// Intercept runtime error in case of different block
// lengths
if (sl != s2)
print ("Blockléngenfehler");
else
{
typeinfo setzen();
for (i=0; i<sl; i=i+1)
{
// In case of incorrect index -> runtime error
ol << 1il1[i] * i2[i];
}
}
}

X9751025-C010080MSC

Tips & Tricks Kap. 6
6.2.9 Examples

Linear regression:

The polynominal coefficients of a linear regression y = A0 + A1*x describe
a regression straight line through a signal (packet). The y signal is the
output of the Formula module. Sync generates a corresponding time signal
x. The coefficients A0, A1, and dx are applied to the inputs of Interpret in
addition to the y signal. The output represents the deviation from the
straight line.

Jln[x] 1
I

cEl

Formulad Syncd Interpreti2

Fegressionz

Pic. 6.2: Regression signal graph

input trigger
vy (,TYPEINFO", “TypeInfo"“, "DOUBLE[] ", “"TIME DOMAIN") ;
input trigger
A0 (,,TYPEINF “, "TypeInfo"“, “"DOUBLE[1] ", “"TIME DOMAIN") ;
input trigger
Al (,TYPEINFO"“, “"TypeInfo",“"DOUBLE[1]", “"TIME DOMAIN") ;
input trigger
dx (,TYPEINFO"“, “TypeInfo"“, "DOUBLE[1]", “"TIME DOMAIN"“) ;
output
out (,TYPEINFO"“, “TypeInfo", "DOUBLE[] ", "TIME DOMAIN"“) ;
int s;
int 1i;
execute

{

s = size(y);

ti copy(out, y);

for (1 =0 ,; 1 < s; ++1)

{

out << y[i]- A0[0] / dx[0] + Al[O0];

}

}

X9751025-C010080MSC

m Kap. 6 Tips & Tricks

Automation of an EMC Measurement:

A measuring set-up should be automated for examining RF interference in
the power supply cable of the equipment under test. For this purpose a list
of frequency and power values is read in from a file and is output through
IEE488-BUS to an oscillator (Hameg HM 8133-2) and an RF power amplifier
(Frankonia FLL 75) for control. The amplifier supplies its RF output to a
current probe, which is used for inducing currents in the cable that have an
interfering effect on the equipment under test. The deviation from the set
value of the equipment under test at the respective interference is measured
with a multimeter (Keithley 2000). The interference as a function of the
frequency is written in a file and displayed graphically.

input I Frq (,TYPEINFO“, ,TypeInfo“, ,DOUBLE[]",
»TIME DOMAIN“) ;

input I Dbm (,TYPEINFO“, ,TypeInfo“, ,DOUBLE[]",
»TIME DOMAIN“) ;

input I Schalter (,TYPEINFO"“, ,TypeInfo"“, ,SWORD",
~BIN") ;

input I Start (,TYPEINFO"“, ,TypeInfo“, ,SWORD"“, ,BIN"“);,
output O Frq (,TYPEINFO“, ,TypeInfo", ,DOUBLE[]",
»TIME DOMAIN“) ;

output O U (,TYPEINFO"“, ,TypeInfo“, ,DOUBLE[]",
»TIME DOMAIN“) ;

int status;

int s; int 1; int t;

double f; double p; double v;
char beffrql[60];

char wertfrqg[40];

char befdbm[60];

char wertdbm([40];

char volt werte[80];

X9751025-C010080MSC

Tips & Tricks

typeinfo setzen f()
{
ti setname (,Frequenz“,0 Frqg);
ti settimestamp (time(),0 Frq);
ti setsamplerate(1.5,0 Frqg);
ti setrangemin (0.0,0 Frq);
ti setrangemax (100000000.0,0 Frq);
ti setscale(1.0,0 Frqg);
ti setstatus (3,0 Frq);
}

typeinfo setzen v()
{
ti setname(,Volt“,0 U);
ti settimestamp (time(),0 U);
ti setsamplerate(1.5,0 U);
ti setrangemin (0.0,0 U);
ti setrangemax (1000.0,0 U);
ti setscale(1.0,0 U);
ti setstatus (3,0 U);
}

X9751025-C010080MSC

m Kap. 6 Tips & Tricks

// nitialising the IEEE488 interface (Keithley KPC-488.2)
initialize (21, 0);

t=1000000;

// DMM function V, Range Auto
send(16,"“:volt:dc:rang:auto on",status) ;
// Hameg frequency, attenuation

send (7, frq:150000,dbm:-50,am2:80",status) ;

}

execute
{
if (I Start == 1) t = 0;
// Number of measuring frequencies
s = size(I Frqg);
if (I Schalter == 1 && t<s)
{
// Creates the command for setting the frequency at
//Hameg HM 8133-2
beffrqg = ,frqg:"“;
r =1 Frqgl[t];
ftoa(wertfrq, £, 20);
strcat(beffrq, wertfrqg);

// Creates the command for setting the attenuation at
// Hameg HM 8133-2

befdbm = ,dbm:"“;

p = I Dbm[t];

ftoa(wertdbm, p, 20);

strcat (befdbm, wertdbm) ;

// Sends settings to Hameg HM 8133-2 (IEEE488 equipment
// adress 7)

send (7, ,opl:“, status);,

send (7, beffrqg, status);,

send (7, befdbm, status);

// 1.5 seconds hold on time
Sleep (1500) ;

X9751025-C010080MSC

Tips & Tricks Kap. 6 E

// Sends settings to Keithley 2000 (IEEE488 equipment /
// address 16)
// Switch off continuous measurement

send (16, ,init:cont 0%, status);

send (16, ,meas:volt:dc?", status);
// Read a voltage value (of max. 40 characters) from
// Keithley 2000
// 1 = actual number of characters in string

enter (volt werte, 40, 1, 16, status);

send (16, ,init:cont 1%, status), // continuous
// measurement

v = atof(volt werte);

O Frg<<ft;

O U<<v;

typeinfo setzen f();

typeinfo setzen v();

t++,;

}

X9751025-C010080MSC

Kap. 7 Debugger
7. Debugger

The graphic debugger in ICONNECT serves for locating faults in the signal
graph that occur during the runtime of the program. It can be used for
controlling (break, single step) and monitoring (watch window) the data
flow. The debugger pauses program execution at fixed positions
(breakpoints) and

« allows you to locate faults in the signal graph,
* provides information about the fault position, and
* ensures quick program testing.

7.1 Breakpoint
The program is stopped at a breakpoint.

Setting a breakpoint:

* Place the mouse pointer on the module in the signal graph
* Press the right mouse button

* Select Set/delete breakpoint from the pull-down menu

Q Please note:
A breakpoint can also be set in the running signal graph. It is possible
to set an unlimited number of breakpoints. The breakpoints are

stored together with the signal graph.

In the signal graph a module with a set breakpoint is marked with a frame
(see pic. 7.1). ICONNECT stops before breakpoint execution.

L 7l
i
Scaled
SinGen
a2 E_.
Scale?
Fandomd

Pic. 7.1: Signal graph with a breakpoint for the Scale1 module

X9751025-C010080MSC

Debugger Kap. 7

In debugger mode the commands
- Single step (Strg+E) Signal graph execution in single steps
- Continue processing Execute signal graph up to the next breakpoint
(Strg+W)
are available in the measurement menu.

& X = B [El

Delete Delete Break Single Continue
breakpoints watch widow step

Pic. 7.2: Section of the toolbar with debug commands

Deleting a breakpoint:

* Place the mouse pointer on the module in the signal graph

* Press the right mouse button

* Select Set/delete breakpoint from the pull-down menu, or select Delete
breakpoints from the Measurement menu to delete all the breakpoints.

When you pause the signal graph (menu Measurement > Break), you also
can execute the signal graph in single steps.

7.2 Watch window
ICONNECT displays the contents of a communication channel in watch
windows (see pic. 7.3). By using two watch windows, before and after a

breakpoint, you can check the input and output data of a module.

»Watch - [Scalel[01] - AnalogChart1[I1]) E

512 -1.60157 -1.11608 -0.627905 -0.1358226 0.351756 =
0840952 13281 1.81206 2. 291664 2. 7E57E7

3.233229 3692927 4143756 4.584634 5014503
5.432331 5.837113 6.227378 6.603657 6.963633
7306868 7. 63255 7933304 2.228191 2436719

8.744543 8.971967 3.177546 9.361057 9.522147
9.6E0342 9.775338 9.866359 9.934687 9.970658 ;I

Pic. 7.3: Watch window

X9751025-C010080MSC

Kap. 7 Debugger

Opening a watch window:
* Pause the signal graph
* Double-click on the line to open the watch window

When the signal graph is paused, there is another possibility for displaying
the contents of a communication channel. For this purpose position the
mouse pointer on the desired line in the signal graph.

The title in the watch window lists the two modules that are connected to
each other by means of the watched channel. It is possible to use an
unlimited number of watch windows.

Please note:
(0 Watch windows only display data in a paused signal graph.

Deleting watch windows:
Select Delete watch windows from the Measurement menu to remove all
the open watch windows.

X9751025-C010080MSC

Appendix

Kap. 9

9. Appendix

9.1

Data Types in ICONNECT

ICONNECT-
data type

C-
Data type

Bytes

Range

Resolution

DOUBLE
DOUBLE[1]
DOUBLE][]

double

+ 1,7E308

15 digits

FLOAT
FLOAT[1]
FLOATI[]

float

+ 3,4E38

7 digits

SDWORD
SDWORD[1]
SDWORD]]

long

-2 147 483 648 ...
2 147 483 647

UDWORD
UDWORDI[1]
UDWORD]

unsigned long

0 ... 4 294 967 295

SWORD
SWORDI[1]
SWORDJ[]

int (32 Bit)

-2 147 483 648 ...
2 147 483 647

UWORD
UWORDI1]
UWORDI]

unsigned int

0 ... 4 294 967 295

UBYTE
UBYTE[1]

unsigned char

0..255

UBYTEJ]

CString

X9751025-C010080MSC

Kap. 9

Appendix

9.2 Modules in Connection with External Data Sources

Module name

LoadTable / SaveTable

LoadAscii / SaveAscii

DBLoad / DBSave

FileDIg

Properties

max. 16 columns (=16 inputs); no time behaviour,
but data transfer as fast as possible
(for Ascii, Excel, etc.);

ICONNECT data format with time and unit

Two channels (x,y or x,t); optionally incl. time
behaviour, i.e. during loading data are transferred
with the same speed they were originally saved
with.

Connection to database (Access)

Allows interactive input of file name and path
(for LoadTable, LoadAscii, and DBLoad).

X9751025-C010080MSC

Appendix Kap. 9

9.3 Error Messages

* Are the following type declarators compatible?

This is not an error, but only a notice: The data types are compatible, but
the type declarators are different. Since type declarators may also be
assigned manually, the user (signal graph developer) can decide whether a
combination of these inputs/outputs makes sense.

* Arithmetic error

This error occurs in case of a division by 0, or if the result of a calculation
exceeds the value range (e.g. if an attempt is made to encode 4096 with
12 bits).

* Block lengths at the inputs do not correspond

The upstream modules of a module with several inputs supply data blocks
with differing numbers of data. For correct processing these must be
identical.

Remedy: Shortening of blocks can be achieved, for example, with the
Resampling module (data reduction).

Synchronisation of data is possible with the Sync module.

* Buffer overflow
The data buffer used by this module was not able to store all data. This
occurs if the data buffer is too small, or if data processing is too complex.

« Different base lypes

(Data types not compatible)

These modules cannot be connected with each other.

Possible solution: Type conversion with the TypeCast module often allows
connection despite different data types. This cannot be recommended,
because depending on the type of conversion there will be rounding errors,
complete data sectors will be cut, or a conversion of this kind simply makes
no sense.

« Different number of validation parameters! 2 vs. 1.
A port that requires several parameters cannot be connected with a port that
only supplies one parameter.

« Different sampling rates at the inputs

The module requires the same Sample Rate at several inputs (consult the
respective online help on the module).

The sampling rates can be visualized and compared with the TIDisp module.

X9751025-C010080MSC

Kap. 9 Appendix

* Driver error:

A virtual device driver (VxD) cannot operate correctly because, for example
there is no supported hardware (A/D converter card, etc.), or because the
set I/O addresses, DMAs, IRQs, etc. are invalid or already used.

Remedy: Check the hardware (damaged, incorrectly installed), adapt the
driver settings to the system configuration of the computer (Device manager
> Settings in the system control panel).

« Error during parameter transfer via the EXT input.
There are invalid parameters at the EXT input.
Remedy: Reconfigure the module that supplies the parameters.

e Error during parameter transfer via the EXT input:

The parameters that are supplied to the module through the EXT input do
not correspond with the expected format. If the ParamConv module is the
parameter source, this must be reconfigured (see ParamConv.hip).

This error message may occur if the parameters exceed certain limits.
(Example: The lower limit for the representation of a sine signal is 2, or the
upper limit lies below the lower limit)

* File error:

A file could not be opened or saved. Possible causes: The file does not
exist, is not at the specified location (path), is damaged, has the incorrect
format (old version), is write-protected, or the storage medium (hard disk)
does not offer enough free space.

¢ Incorrect ICONNECT version
The signal graph that should have been loaded has another version number
that is not compatible with this ICONNECT version.

* Module xxx signals an error during initialisation

An attempt was made to use modules belonging to the ICONNECT runtime
version with an ICONNECT developer version, or vice versa.

Remedy: Create the module path to the correct modules. Otherwise reinstall
ICONNECT.

* No ICONNECT signal graph

The selected document does not contain a valid signal graph, or it is
damaged.

X9751025-C010080MSC

Appendix Kap. 9

» Number of blocks does not correspond

The upstream modules of a module with several inputs supply different
numbers of blocks. The module operates with data blocks, therefore the
same number of blocks must be supplied.

 Obligate input not connected

An input the module needs for processing is not connected.

Remedy: Check the connection, consult the corresponding help file on the
module.

» Packet jam

This occurs if the upstream module supplies data packets faster than they
can or may be processed by this module.

It also occurs if a module has several upstream modules that supply parallel
data packets in different time intervals.

Remedy: Excess packets can be skipped with the Sync module (loss of
data), and a packet jam can be avoided.

* Packet status does not correspond

Cause: Data packets arriving asynchronously (Example: One input receives
packets with several blocks, while another input of the same module only
receives data packets with one block).

Possible remedy: Synchronisation with the Sync module.

* The file is no DisplayManager document

The selected document does not correspond with the required format and
was therefore not loaded.

Possible cause: A DisplayManager window was active when you tried to
load a signal graph (*.tc2) or another file. An active output window of a
DisplayManager only allows loading of its own special file format.

The window of the signal graph must be activated first in order to be able to
load a signal graph.

e The resource ID of a module is used twice

A module exists several times under different names in the module directory.
Remedy: Delete the modules and reinstall the program.

X9751025-C010080MSC

Kap. 9 Appendix

e The signal graph contains a recursive nesting of macros
Recursive nesting of macros makes no sense. A corresponding signal graph
cannot be started.

e The signal graph could not be opened

Check whether all the required modules are present.

Possible cause: Module path incorrectly set, modules missing, or not
licensed for this dongle.

 The status of two inputs does not correspond:

This occurs if upstream modules supply data packets asynchronously, but
the module processes the data in packets. Remedy is possible with the
Sync module (synchronisation of data).

 The time stamp on channel 11 is incorrect! Please check your signal
graph.

A module that processes data with the help of the time signal (=timestamp)
receives an invalid timestamp.

Troubleshooting: The time signal can be checked with the TIDisp module. If
the module supplies no time signal or an invalid time signal, TIDisp indicates
“-” as the timestamp.

Remedy: Reconfigure the module that generates the incorrect time signal,
or replace it with another module.

» The units do not match:
It makes no sense to add or subtract data with different units.

e There are no source modules in the signal graph
A signal graph without a data source makes no sense and can therefore not
be started.

e This module can not be used in the demo-version
Certain modules can only be used in the licensed version. Please contact
your distributor for licensing.

» This input of the module is already in use
Inputs can only receive data from one data source.

X9751025-C010080MSC

Appendix Kap. 9

 This channel is already used by another transmitter
Two Communicate modules cannot write into the same channel.
Please select another channel.

e Unable to allocate enough memory

This may be caused by too many open applications,

too little memory (RAM), or by a hard disk with insufficient capacity. It is
also possible that modules allocate a lot of memory, if the buffer sizes are
exaggerated.

Remedy: Fist close all the applications that are not required (Word, etc.).
The virtual memory should be located on a hard disk that offers enough free
space (64 MB minimum). If this is not enough, it is recommendable to install
a larger hard disk and maybe more memory.

Please contact your system / signal graph developer, if this problem occurs
repeatedly.

» Unable to generate module

Causes: The module is not licensed, is damaged, or has the incorrect
version.

Remedy: If you use a demo-version, reinstall it. Otherwise license the
module (please contact your distributor).

» Validation failure. Different types
These modules can never be connected with each other. A connection of
these modules never makes sense.

» Warning. The signal graph contains a cycle! (It can only be aborted
using the 'Kill 'button).

This is no error, but if the cycle does not contain an abort condition, the
signal graph can only by stopped with an emergency stop (button/menu
entry).

X9751025-C010080MSC

	Contents
	Introduction
	Licence Agreement
	1. Installation
	2. Editor Functions
	2.1 Drawing Signal Graphs
	2.1.1 The Signal Graph, the ICONNECT Program
	2.1.2 Selecting Modules
	2.1.3 Defining Module Parameters
	2.1.4 Selecting Parameter Sources in ICONNECT
	2.1.5 Connecting Module Ports
	2.1.6 Saving and Loading Signal Graphs
	2.2 Online Help
	2.3 Editing the Modules in the Signal Graph
	2.4 Editing a Module Group in the Signal Graph
	2.5 Example
	2.6 Summary
	3. The ICONNECT Module Library
	3.1 Arithmetic Modules
	3.1.1 The VecOpVec Module
	3.1.2 The VecOpScal Module
	3.1.3 The Formula Module
	3.2 Modules of the Display Group
	3.2.1 The AnalogDisp Module
	3.2.2 The Plot Module
	3.2.3 The InputManager and DisplayManager Modules
	3.3 Modules of the Logic Group
	3.3.1 The Count Module
	3.3.2 The UniGate Module
	3.3.3 The FlipFlop, Mono-Flop, and T-FlipFlop Modules
	3.4 Saving and Loading Data
	3.5 Modules of the Signal Processing Group
	3.6 Modules of the Statistics Group
	3.6.1 The DStatistics Module
	3.6.2 The Hist Module
	3.6.3 The Sort Module
	3.7 Modules of the FlowControl Group
	3.7.1 The ForNext Module
	3.7.2 The DEMUX Module
	4. Communication and Type Information
	5. User Administration
	6. Tips & Tricks
	6.1 Scheduler
	6.2 Interpret Programming
	6.2.1 Input/Output Declaration
	6.2.2 Declarating Variables
	6.2.3 Calling up Predefined Functions
	6.2.4 Program Sections
	6.2.5 Read/Write Operations on Streams
	6.2.6 The Type-Info Structure
	6.2.7 Interpret as a Data Source
	6.2.8 Trigger
	6.2.9 Examples
	7. Debugger
	7.1 Breakpoint
	7.2 Watch window
	9. Appendix
	9.1 Data Types in ICONNECT
	9.2 Modules in Connection with External Data Sources
	9.3 Error Messages

